Read by QxMD icon Read


Oznur Bayraktar, Ozlem Oral, Nur Mehpare Kocaturk, Yunus Akkoc, Karin Eberhart, Ali Kosar, Devrim Gozuacik
The ubiquitin-proteasome system (UPS) degrades soluble proteins and small aggregates, whereas macroautophagy (autophagy herein) eliminates larger protein aggregates, tangles and even whole organelles in a lysosome-dependent manner. VCP/p97 was implicated in both pathways. VCP/p97 mutations cause a rare multisystem disease called IBMPFD (Inclusion Body Myopathy with Paget's Disease and Frontotemporal Dementia). Here, we studied the role IBMPFD-related mutants of VCP/p97 in autophagy. In contrast with the wild-type VCP/p97 protein or R155C or R191Q mutants, the P137L mutant was aggregate-prone...
2016: PloS One
Kai Pun Wong, Kin Pan Au, Shi Lam, Brian H Lang
INTRODUCTION: Patients with hoarseness of voice, previous neck operation or suspicion of malignancy are at "high-risk" of having pre-thyroidectomy vocal cord (VC) palsy. Therefore, VC functions should be evaluated before the operation. We aimed to evaluate the accuracy of hoarseness, voice related questionnaire (Voice handicap Index (VHI) - 30) and transcutaneous laryngeal ultrasound (TLUSG) in diagnosing VC palsy, as well as the role of TLUSG in the evaluation of high-risk patients. METHODS: 1000 patients undergoing thyroidectomy or other endocrine-related neck procedures were prospectively included...
October 20, 2016: Thyroid: Official Journal of the American Thyroid Association
Chrisovalantis Papadopoulos, Philipp Kirchner, Monika Bug, Daniel Grum, Lisa Koerver, Nina Schulze, Robert Poehler, Alina Dressler, Sven Fengler, Khalid Arhzaouy, Vanda Lux, Michael Ehrmann, Conrad C Weihl, Hemmo Meyer
Rupture of endosomes and lysosomes is a major cellular stress condition leading to cell death and degeneration. Here, we identified an essential role for the ubiquitin-directed AAA-ATPase, p97, in the clearance of damaged lysosomes by autophagy. Upon damage, p97 translocates to lysosomes and there cooperates with a distinct set of cofactors including UBXD1, PLAA, and the deubiquitinating enzyme YOD1, which we term ELDR components for Endo-Lysosomal Damage Response. Together, they act downstream of K63-linked ubiquitination and p62 recruitment, and selectively remove K48-linked ubiquitin conjugates from a subpopulation of damaged lysosomes to promote autophagosome formation...
October 17, 2016: EMBO Journal
Prasad Kottayil Padmanabhan, Ouafa Zghidi-Abouzid, Mukesh Samant, Carole Dumas, Bruno Guedes Aguiar, Jerome Estaquier, Barbara Papadopoulou
DDX3 is a highly conserved member of ATP-dependent DEAD-box RNA helicases with multiple functions in RNA metabolism and cellular signaling. Here, we describe a novel function for DDX3 in regulating the mitochondrial stress response in the parasitic protozoan Leishmania. We show that genetic inactivation of DDX3 leads to the accumulation of mitochondrial reactive oxygen species (ROS) associated with a defect in hydrogen peroxide detoxification. Upon stress, ROS production is greatly enhanced, causing mitochondrial membrane potential loss, mitochondrial fragmentation, and cell death...
October 13, 2016: Cell Death & Disease
Angèle Nalbandian, Arif A Khan, Ruchi Srivastava, Katrina J Llewellyn, Baichang Tan, Nora Shukr, Yasmin Fazli, Virginia E Kimonis, Lbachir BenMohamed
Aberrant activation of the NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome, triggers a pathogenic inflammatory response in many inherited neurodegenerative disorders. Inflammation has recently been associated with valosin-containing protein (VCP)-associated diseases, caused by missense mutations in the VCP gene. This prompted us to investigate whether NLRP3 inflammasome plays a role in VCP-associated diseases, which classically affects the muscles, bones, and brain. In this report, we demonstrate (i) an elevated activation of the NLRP3 inflammasome in VCP myoblasts, derived from induced pluripotent stem cells (iPSCs) of VCP patients, which was significantly decreased following in vitro treatment with the MCC950, a potent and specific inhibitor of NLRP3 inflammasome; (ii) a significant increase in the expression of NLRP3, caspase 1, IL-1β, and IL-18 in the quadriceps muscles of VCP(R155H/+) heterozygote mice, an experimental mouse model that has many clinical features of human VCP-associated myopathy; (iii) a significant increase of number of IL-1β((+))F4/80((+))Ly6C((+)) inflammatory macrophages that infiltrate the muscles of VCP(R155H/+) mice; (iv) NLRP3 inflammasome activation and accumulation IL-1β((+))F4/80((+))Ly6C((+)) macrophages positively correlated with high expression of TDP-43 and p62/SQSTM1 markers of VCP pathology in damaged muscle; and (v) treatment of VCP(R155H/+) mice with MCC950 inhibitor suppressed activation of NLRP3 inflammasome, reduced the F4/80((+))Ly6C((+))IL-1β((+)) macrophage infiltrates in the muscle, and significantly ameliorated muscle strength...
October 11, 2016: Inflammation
Prabhakar Bastola, Lisa Neums, Frank J Schoenen, Jeremy Chien
Valosin-containing protein (VCP) or p97, a member of AAA-ATPase protein family, has been associated with various cellular functions including endoplasmic reticulum-associated degradation (ERAD), Golgi membrane reassembly, autophagy, DNA repair, and cell division. Recent studies identified VCP and ubiquitin proteasome system (UPS) as synthetic lethal targets in ovarian cancer. Here, we describe the preclinical activity of VCP inhibitors in ovarian cancer. Results from our studies suggest that quinazoline-based VCP inhibitors initiate G1 cell cycle arrest, attenuate cap-dependent translation and induce programmed cell death via the intrinsic and the extrinsic modes of apoptosis...
September 28, 2016: Molecular Oncology
Rui Ding, Ting Zhang, Jiashu Xie, Jessica Williams, Yihong Ye, Liqiang Chen
Inhibition of p97 (also known as valosin-containing protein (VCP)), has been validated as a promising strategy for cancer therapy. Eeyarestatin I (EerI) blocks p97 through a novel mechanism of action and has favorable anti-cancer activities against cultured cancer cells. However, its poor aqueous solubility severely limits its in vivo applications. To circumvent this problem, we have identified EerI derivatives that possess improved aqueous solubility by introducing a single solubilizing group. These modified compounds preserved endoplasmic reticulum (ER) stress-inducing and antiproliferative activities as well as generally good in vitro metabolic properties, suggesting that these EerI derivatives could serve as candidates for further optimization...
September 29, 2016: Bioorganic & Medicinal Chemistry Letters
Hervé Bègue, Sylvain Jeandroz, Cécile Blanchard, David Wendehenne, Claire Rosnoblet
BACKGROUND: The chaperone-like p97 is a member of the AAA+ ATPase enzyme family that contributes to numerous cellular activities. P97 has been broadly studied in mammals (VCP/p97) and yeasts (CDC48: Cell Division Cycle 48/p97) and numerous investigations highlighted that this protein is post-translationally regulated, is structured in homohexamer and interacts with partners and cofactors that direct it to distinct cellular signalization pathway including protein quality control and degradation, cell cycle regulation, genome stability, vesicular trafficking, autophagy and immunity...
October 4, 2016: Biochimica et Biophysica Acta
Johannes van den Boom, Markus Wolf, Lena Weimann, Nina Schulze, Fanghua Li, Farnusch Kaschani, Anne Riemer, Christian Zierhut, Markus Kaiser, George Iliakis, Hironori Funabiki, Hemmo Meyer
During DNA double-strand break (DSB) repair, the ring-shaped Ku70/80 complex becomes trapped on DNA and needs to be actively extracted, but it has remained unclear what provides the required energy. By means of reconstitution of DSB repair on beads, we demonstrate here that DNA-locked Ku rings are released by the AAA-ATPase p97. To achieve this, p97 requires ATP hydrolysis, cooperates with the Ufd1-Npl4 ubiquitin-adaptor complex, and specifically targets Ku80 that is modified by K48-linked ubiquitin chains...
October 6, 2016: Molecular Cell
Hemakumar M Reddy, Kyung-Ah Cho, Monkol Lek, Elicia Estrella, Elise Valkanas, Michael D Jones, Satomi Mitsuhashi, Basil T Darras, Anthony A Amato, Hart Gw Lidov, Catherine A Brownstein, David M Margulies, Timothy W Yu, Mustafa A Salih, Louis M Kunkel, Daniel G MacArthur, Peter B Kang
The current study characterizes a cohort of limb-girdle muscular dystrophy (LGMD) in the United States using whole-exome sequencing. Fifty-five families affected by LGMD were recruited using an institutionally approved protocol. Exome sequencing was performed on probands and selected parental samples. Pathogenic mutations and cosegregation patterns were confirmed by Sanger sequencing. Twenty-two families (40%) had novel and previously reported pathogenic mutations, primarily in LGMD genes, and also in genes for Duchenne muscular dystrophy, facioscapulohumeral muscular dystrophy, congenital myopathy, myofibrillar myopathy, inclusion body myopathy and Pompe disease...
October 6, 2016: Journal of Human Genetics
Qianzheng Zhu, Altaf A Wani
Nucleotide excision repair (NER) eliminates a broad variety of helix-distorting DNA lesions that can otherwise cause genomic instability. NER comprises two distinct sub-pathways: global genomic NER (GG-NER) operating throughout the genome, and transcription-coupled NER (TC-NER) preferentially removing DNA lesions from transcribing DNA strands of transcriptionally active genes. Several NER factors undergo post-translational modifications, including ubiquitination, occurring swiftly and reversibly at DNA lesion sites...
October 1, 2016: Photochemistry and Photobiology
George Fullbright, Halley B Rycenga, Jordon D Gruber, David T Long
Inter-strand crosslinks (ICLs) are extremely toxic DNA lesions that create an impassable roadblock to DNA replication. When a replication fork collides with an ICL, it triggers a damage response that promotes multiple DNA processing events required to excise the crosslink from chromatin and resolve the stalled replication fork. One of the first steps in this process involves displacement of the CMG replicative helicase (comprised of Cdc45, MCM2-7, and GINS), which obstructs the underlying crosslink. Here we report that the p97/Cdc48/VCP segregase plays a critical role in ICL repair by unloading the CMG complex from chromatin...
September 19, 2016: Molecular and Cellular Biology
Gamze Guven, Ebba Lohmann, Jose Bras, J Raphael Gibbs, Hakan Gurvit, Basar Bilgic, Hasmet Hanagasi, Patrizia Rizzu, Peter Heutink, Murat Emre, Nihan Erginel-Unaltuna, Walter Just, John Hardy, Andrew Singleton, Rita Guerreiro
'Microtubule-associated protein tau' (MAPT), 'granulin' (GRN) and 'chromosome 9 open reading frame72' (C9ORF72) gene mutations are the major known genetic causes of frontotemporal dementia (FTD). Recent studies suggest that mutations in these genes may also be associated with other forms of dementia. Therefore we investigated whether MAPT, GRN and C9ORF72 gene mutations are major contributors to dementia in a random, unselected Turkish cohort of dementia patients. A combination of whole-exome sequencing, Sanger sequencing and fragment analysis/Southern blot was performed in order to identify pathogenic mutations and novel variants in these genes as well as other FTD-related genes such as the 'charged multivesicular body protein 2B' (CHMP2B), the 'FUS RNA binding protein' (FUS), the 'TAR DNA binding protein' (TARDBP), the 'sequestosome1' (SQSTM1), and the 'valosin containing protein' (VCP)...
2016: PloS One
Qiang Gang, Conceição Bettencourt, Pedro M Machado, Stefen Brady, Janice L Holton, Alan M Pittman, Deborah Hughes, Estelle Healy, Matthew Parton, David Hilton-Jones, Perry B Shieh, Merrilee Needham, Christina Liang, Edmar Zanoteli, Leonardo Valente de Camargo, Boel De Paepe, Jan De Bleecker, Aziz Shaibani, Michela Ripolone, Raffaella Violano, Maurizio Moggio, Richard J Barohn, Mazen M Dimachkie, Marina Mora, Renato Mantegazza, Simona Zanotti, Andrew B Singleton, Michael G Hanna, Henry Houlden
Genetic factors have been suggested to be involved in the pathogenesis of sporadic inclusion body myositis (sIBM). Sequestosome 1 (SQSTM1) and valosin-containing protein (VCP) are 2 key genes associated with several neurodegenerative disorders but have yet to be thoroughly investigated in sIBM. A candidate gene analysis was conducted using whole-exome sequencing data from 181 sIBM patients, and whole-transcriptome expression analysis was performed in patients with genetic variants of interest. We identified 6 rare missense variants in the SQSTM1 and VCP in 7 sIBM patients (4...
August 8, 2016: Neurobiology of Aging
Xing Guo, XiaoYan Sun, Di Hu, Ya-Juan Wang, Hisashi Fujioka, Rajan Vyas, Sudha Chakrapani, Amit Umesh Joshi, Yu Luo, Daria Mochly-Rosen, Xin Qi
Mutant Huntingtin (mtHtt) causes neurodegeneration in Huntington's disease (HD) by evoking defects in the mitochondria, but the underlying mechanisms remains elusive. Our proteomic analysis identifies valosin-containing protein (VCP) as an mtHtt-binding protein on the mitochondria. Here we show that VCP is selectively translocated to the mitochondria, where it is bound to mtHtt in various HD models. Mitochondria-accumulated VCP elicits excessive mitophagy, causing neuronal cell death. Blocking mtHtt/VCP mitochondrial interaction with a peptide, HV-3, abolishes VCP translocation to the mitochondria, corrects excessive mitophagy and reduces cell death in HD mouse- and patient-derived cells and HD transgenic mouse brains...
2016: Nature Communications
Zhigang Yi, Caiyun Fang, Jingyi Zou, Jun Xu, Wuhui Song, Xiaoting Du, Tingting Pan, Haojie Lu, Zhenghong Yuan
: Like almost all of the positive-strand RNA viruses, hepatitis C virus (HCV) induces host intracellular membrane modification to form the membrane-bound viral replication complex (RC), within which viral replicases amplify the viral RNA genome. Despite accumulated information about how HCV co-opts host factors for viral replication, our knowledge of the molecular mechanisms by which viral proteins hijack host factors for replicase assembly has only begun to emerge. Purification of the viral replicase and identification of the replicase-associated host factors to dissect their roles in RC biogenesis will shed light on the molecular mechanisms of RC assembly...
November 1, 2016: Journal of Virology
Nicholas J Silvestri, Gil I Wolfe, David Lacomis, Mark B Bromberg
The Guillain-Barré syndrome (GBS) is one of the few neuropathies well known to the general public, in part because of its association with swine flu vaccinations in 1976. GBS has again reached the general public with its possible association with Zika virus. The virus, borne by infected Aedes aegypti mosquitos, is being linked to birth defects when pregnant women are bitten and infected. There are early reports also linking GBS to Zika infection, which could expose a wider range of infected people to the neuropathy...
September 2016: Journal of Clinical Neuromuscular Disease
Won-Hee Song, Young-Joo Yi, Miriam Sutovsky, Stuart Meyers, Peter Sutovsky
Maternal inheritance of mitochondria and mtDNA is a universal principle in human and animal development, guided by selective ubiquitin-dependent degradation of the sperm-borne mitochondria after fertilization. However, it is not clear how the 26S proteasome, the ubiquitin-dependent protease that is only capable of degrading one protein molecule at a time, can dispose of a whole sperm mitochondrial sheath. We hypothesized that the canonical ubiquitin-like autophagy receptors [sequestosome 1 (SQSTM1), microtubule-associated protein 1 light chain 3 (LC3), gamma-aminobutyric acid receptor-associated protein (GABARAP)] and the nontraditional mitophagy pathways involving ubiquitin-proteasome system and the ubiquitin-binding protein dislocase, valosin-containing protein (VCP), may act in concert during mammalian sperm mitophagy...
September 6, 2016: Proceedings of the National Academy of Sciences of the United States of America
Agessandro Abrahao, Osório Abath Neto, Fernando Kok, Edmar Zanoteli, Bibiana Santos, Wladimir Bocca Vieira de Rezende Pinto, Orlando Graziani Povoas Barsottini, Acary Souza Bulle Oliveira, José Luiz Pedroso
BACKGROUND: VCP (valosin-containing protein gene) variants have been associated with peripheral and central neurodegenerative processes, including inclusion body myopathy (IBM), Paget disease of bone (PDB), frontotemporal dementia (FTD), and familial amyotrophic lateral sclerosis (ALS) type 14. The combination of IBM, PDB (IBMPFD1) can presented in one individual. However, the association of IBMPFD1 and ALS in the same family is rare. METHODS: We reported three individuals from a Brazilian kindred with intrafamilial phenotype variability...
September 15, 2016: Journal of the Neurological Sciences
Pratikkumar Harsukhbhai Vekaria, Trisha Home, Scott Weir, Frank J Schoenen, Rekha Rao
Cancer cells are addicted to numerous non-oncogenic traits that enable them to thrive. Proteotoxic stress is one such non-oncogenic trait that is experienced by all tumor cells owing to increased genomic abnormalities and the resulting synthesis and accumulation of non-stoichiometric amounts of cellular proteins. This imbalance in the amounts of proteins ultimately culminates in proteotoxic stress. p97, or valosin-containing protein (VCP), is an ATPase whose function is essential to restore protein homeostasis in the cells...
2016: Frontiers in Oncology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"