Read by QxMD icon Read


Yin-Shan Meng, Shang-Da Jiang, Bing-Wu Wang, Song Gao
Single-molecule magnets (SMMs) can retain their magnetization status preferentially after removal of the magnetic field below a certain temperature. The unique property, magnetic bistable status, enables the molecule-scale SMM to become the next-generation high-density information storage medium. SMMs' new applications are also involved in high-speed quantum computation and molecular spintronics. The development of coordination chemistry, especially in transition metal (3d) and lanthanide (4f) complexes, diversifies SMMs by introducing new ones...
October 21, 2016: Accounts of Chemical Research
Mohammad Samiei, Marziyeh Aghazadeh, Effat Alizadeh, Naser Aslaminabadi, Soodabeh Davaran, Sajjad Shirazi, Farhad Ashrafi, Roya Salehi
Purpose: Statin is an effective factor for promoting osteogenesis. The aim of the present study was to evaluate the effect of simvastatin (SIM) and/or HA addition on changes in osteogenesis levels by human DPSCs transferred onto three-dimensional (3D) nanofibrous Poly (ε-caprolactone) (PCL)/Poly lactic acide (PLLA) polymeric scaffolds. Methods: For this purpose, a 3D nanofibrous composite scaffold of PCL/PLLA/HA was prepared by electrospinning method. SIM was added to scaffolds during DPSCs culturing step...
September 2016: Advanced Pharmaceutical Bulletin
Shilpi Yadav, Jonathan K Williamson, Maria A Aronova, Andrew A Prince, Irina D Pokrovskaya, Richard D Leapman, Brian Storrie
Platelets are small, anucleate cell fragments that are central to hemostasis, thrombosis, and inflammation. They are derived from megakaryocytes from which they inherit their organelles. As platelets can synthesize proteins and contain many of the enzymes of the secretory pathway, one might expect all mature human platelets to contain a stacked Golgi apparatus, the central organelle of the secretory pathway. By thin section electron microscopy, stacked membranes resembling the stacked Golgi compartment in megakaryocytes and other nucleated cells can be detected in both proplatelets and platelets...
October 18, 2016: Platelets
Carol A Casey, Ganapati Bhat, Melissa S Holzapfel, Armen Petrosyan
BACKGROUND: It is known that ethanol (EtOH) and its metabolites have a negative effect on protein glycosylation. The fragmentation of the Golgi apparatus induced by alteration of the structure of largest Golgi matrix protein, giantin, is the major consequence of damaging effects of EtOH-metabolism on the Golgi; however, the link between this and abnormal glycosylation remains unknown. Because previously we have shown that Golgi morphology dictates glycosylation, we examined the effect EtOH administration has on function of Golgi residential enzymes involved in N-glycosylation...
October 17, 2016: Alcoholism, Clinical and Experimental Research
Mara C Modest, Eric J Moore, Kathryn M Van Abel, Jeffrey R Janus, John R Sims, Daniel L Price, Kerry D Olsen
OBJECTIVES/HYPOTHESIS: Discuss current techniques utilizing the scapular tip and subscapular system for free tissue reconstruction of maxillary defects and highlight the impact of medical modeling on these techniques with a case series. STUDY DESIGN: Case review series at an academic hospital of patients undergoing maxillectomy + thoracodorsal scapula composite free flap (TSCF) reconstruction. Three-dimensional (3D) models were used in the last five cases. METHODS: 3D modeling, surgical, functional, and aesthetic outcomes were reviewed...
October 12, 2016: Laryngoscope
L Sim
The purpose of this study was to evaluate if MED610 3D printed material can be used as a surrogate for acrylic in the manufacturing of a replacement insert used in an eye plaque brachytherapy applicator. Measurement of the dose distributions from a standard acrylic insert were compared with dose obtained from MED610 3D printed replica using GafChromic(®) EBT3 films. The study used a 15 mm Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaque applicator loaded with I-125 (model 6711) seeds...
October 11, 2016: Australasian Physical & Engineering Sciences in Medicine
Jean-Luc Vorng, Anna M Kotowska, Melissa K Passarelli, Andrew West, Peter S Marshall, Rasmus Havelund, Martin P Seah, Colin T Dollery, Paulina D Rakowska, Ian S Gilmore
There is an increasing need in the pharmaceutical industry to reduce drug failure at late stage and so reduce the cost of developing a new medicine. Since most drug targets are intracellular this requires a better understanding of the drug disposition within a cell. Secondary ion mass spectrometry has been identified as a potentially important technique to do this as it is label-free and allows imaging in 3D with sub-cellular resolution and recent studies have shown promise for amiodarone. An important analytical parameter is sensitivity and we measure this in a bovine liver homogenate reference sample for twenty drugs representing important class-types relevant to the pharmaceutical industry...
October 11, 2016: Analytical Chemistry
Kurt Farrell, Ali Borazjani, Margot Damaser, Chandrasekhar R Kothapalli
Under disease or injury conditions in the central nervous system (CNS), activated microglia release cytokines and chemokines to modulate the microenvironment and influence tissue remodeling. To exploit the full potential of neural stem cell (NSC) transplantation approaches, a permissive microenvironment needs to be created for their survival, homing and differentiation. To investigate the role of chronically activated microglia in the fate of NSCs, spontaneously immortalized murine microglial cells (SIM-A9) were cocultured with embryonic murine cortical NSCs on 2D substrates or within 3D gels...
October 10, 2016: Integrative Biology: Quantitative Biosciences From Nano to Macro
Vera Dugina, Irina Alieva, Natalya Khromova, Igor Kireev, Peter W Gunning, Pavel Kopnin
Actin microfilaments and microtubules are both highly dynamic cytoskeleton components implicated in a wide range of intracellular processes as well as cell-cell and cell-substrate interactions. The interactions of actin filaments with the microtubule system play an important role in the assembly and maintenance of 3D cell structure. Here we demonstrate that cytoplasmic actins are differentially distributed in relation to the microtubule system. LSM, 3D-SIM, proximity ligation assay (PLA) and co-immunoprecipitation methods applied in combination with selective depletion of β- or γ-cytoplasmic actins revealed a selective interaction between microtubules and γ-, but not β-cytoplasmic actin via the microtubule +TIPs protein EB1...
September 24, 2016: Oncotarget
Alessandro Lorenzo Palma, Lucio Cinà, Yan Busby, Andrea Marsella, Antonio Agresti, Sara Pescetelli, Jean-Jacques Pireaux, Aldo Di Carlo
Solution-processed hybrid bromide perovskite light-emitting-diodes (PLEDs) represent an attractive alternative technology that would allow overcoming the well-known severe efficiency drop in the green spectrum related to conventional LEDs technologies. In this work, we report on the development and characterization of PLEDs fabricated using, for the first time, a mesostructured layout. Stability of PLEDs is a critical issue; remarkably, mesostructured PLEDs devices tested in ambient conditions and without encapsulation showed a lifetime well-above what previously reported with a planar heterojunction layout...
October 3, 2016: ACS Applied Materials & Interfaces
Mei Rong, Atsushi Matsuda, Yasushi Hiraoka, Jibak Lee
Cohesins containing a meiosis-specific α-kleisin subunit, RAD21L or REC8, play roles in diverse aspects of meiotic chromosome dynamics including formation of axial elements (AEs), assembly of the synaptonemal complex (SC), recombination of homologous chromosomes, and cohesion of sister chromatids. However, the exact functions of individual α-kleisins remain to be elucidated. Here, we examined the localization of RAD21L and REC8 within the SC by super-resolution microscopy, 3D-SIM. We found that both RAD21L and REC8 were localized at the connection sites between lateral elements (LEs) and transverse filaments (TFs) of pachynema with RAD21L locating interior to REC8 sites...
September 26, 2016: Journal of Reproduction and Development
Ronny Förster, Kai Wicker, Walter Müller, Aurélie Jost, Rainer Heintzmann
The reconstruction process of structured illumination microscopy (SIM) creates substantial artefacts if the specimen has moved during the acquisition. This reduces the applicability of SIM for live cell imaging, because these artefacts cannot always be recognized as such in the final image. A movement is not necessarily visible in the raw data, due to the varying excitation patterns and the photon noise. We present a method to detect motion by extracting and comparing two independent 3D wide-field images out of the standard SIM raw data without needing additional images...
September 19, 2016: Optics Express
Minh N Nguyen, Adelene Y L Sim, Yue Wan, M S Madhusudhan, Chandra Verma
RNA molecules are attractive therapeutic targets because non-coding RNA molecules have increasingly been found to play key regulatory roles in the cell. Comparing and classifying RNA 3D structures yields unique insights into RNA evolution and function. With the rapid increase in the number of atomic-resolution RNA structures, it is crucial to have effective tools to classify RNA structures and to investigate them for structural similarities at different resolutions. We previously developed the algorithm CLICK to superimpose a pair of protein 3D structures by clique matching and 3D least squares fitting...
September 14, 2016: Nucleic Acids Research
Quentin P Vanbellingen, Anthony Castellanos, Monica Rodriguez-Silva, Iru Paudel, Jeremy W Chambers, Francisco A Fernandez-Lima
In this work, we show the advantages of label-free, tridimensional mass spectrometry imaging using dual beam analysis (25 keV Bi3 (+)) and depth profiling (20 keV with a distribution centered at Ar1500 (+)) coupled to time of flight secondary ion mass spectrometry (3D-MSI-TOF-SIMS) for the study of A-172 human glioblastoma cell line treated with B-cell lymphoma 2 (Bcl-2) inhibitor ABT-737. The high spatial (~250 nm) and high mass resolution (m/Δm ~10,000) of TOF-SIMS permitted the localization and identification of the intact, unlabeled drug molecular ion (m/z 811...
August 31, 2016: Journal of the American Society for Mass Spectrometry
Tuula Jyske, Katsushi Kuroda, Jussi-Petteri Suuronen, Andrey Pranovich, Sílvia Roig-Juan, Dan Aoki, Kazuhiko Fukushima
Phenolic stilbene glucosides (astringin, isorhapontin, and piceid) and their aglycons commonly accumulate in the phloem of Norway spruce (Picea abies). However, current knowledge about the localization and accumulation of stilbenes within plant tissues and cells remains limited. Here, we used an innovative combination of novel microanalytical techniques to evaluate stilbenes in a frozen-hydrated condition (i.e. in planta) and a freeze-dried condition across phloem tissues. Semiquantitative time-of-flight secondary ion-mass spectrometry imaging in planta revealed that stilbenes were localized in axial parenchyma cells...
October 2016: Plant Physiology
A Priebe, G Goret, P Bleuet, G Audoit, J Laurencin, J-P Barnes
This paper shows how X-ray computed nanotomography (CNT) can be correlated with focused ion beam time-of-flight secondary ion mass spectrometry (FIB-TOF-SIMS) tomography on the same sample to investigate both the morphological and elemental structure. This methodology is applicable to relatively large specimens with dimensions of several tens of microns whilst maintaining a high spatial resolution of the order of 100 nm. However, combining X-ray CNT and FIB-TOF-SIMS tomography requires innovative sample preparation protocols to allow both experiments to be conducted on exactly the same sample without chemically or structurally modifying the sample between measurements...
November 2016: Journal of Microscopy
Jie-Hua Shi, Qi Wang, Dong-Qi Pan, Ting-Ting Liu, Min Jiang
The binding interactions of simvastatin (SIM), pravastatin (PRA), fluvastatin (FLU), and pitavastatin (PIT) with bovine serum albumin (BSA) were investigated for determining the affinity of four statins with BSA through multiple spectroscopic and molecular docking methods. The experimental results showed that SIM, PRA, FLU, and PIT statins quenched the intrinsic fluorescence of BSA through a static quenching process and the stable stains-BSA complexes with the binding constants in the order of 10(4) M(-1) at 298 K were formed through intermolecular nonbond interaction...
August 3, 2016: Journal of Biomolecular Structure & Dynamics
Mayandi Sivaguru, Michael A Urban, Glenn Fried, Cassandra J Wesseln, Luke Mander, Surangi W Punyasena
The visualization of taxonomically diagnostic features of individual pollen grains can be a challenge for many ecologically and phylogenetically important pollen types. The resolution of traditional optical microscopy is limited by the diffraction of light (250 nm), while high resolution tools such as electron microscopy are limited by laborious preparation and imaging workflows. Airyscan confocal superresolution and structured illumination superresolution (SR-SIM) microscopy are powerful new tools for the study of nanoscale pollen morphology and three-dimensional structure that can overcome these basic limitations...
August 1, 2016: Microscopy Research and Technique
Veit Schubert, Mateusz Zelkowski, Sonja Klemme, Andreas Houben
Due to the X-shape formation at somatic metaphase, the arrangement of the sister chromatids is obvious in monocentric chromosomes. In contrast, the sister chromatids of holocentric chromosomes cannot be distinguished even at mitotic metaphase. To clarify their organization, we differentially labelled the sister chromatids of holocentric Luzula and monocentric rye chromosomes by incorporating the base analogue EdU during replication. Using super-resolution structured illumination microscopy (SIM) and 3D rendering, we found that holocentric sister chromatids attach to each other at their contact surfaces similar to those of monocentrics in prometaphase...
July 26, 2016: Cytogenetic and Genome Research
Juliane Liepe, Aaron Sim, Helen Weavers, Laura Ward, Paul Martin, Michael P H Stumpf
Spatial structures often constrain the 3D movement of cells or particles in vivo, yet this information is obscured when microscopy data are analyzed using standard approaches. Here, we present methods, called unwrapping and Riemannian manifold learning, for mapping particle-tracking data along unseen and irregularly curved surfaces onto appropriate 2D representations. This is conceptually similar to the problem of reconstructing accurate geography from conventional Mercator maps, but our methods do not require prior knowledge of the environments' physical structure...
July 2016: Cell Systems
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"