Read by QxMD icon Read

Pharmacological chaperones

Yuanyuan Chen, Yu Chen, Beata Jastrzebska, Marcin Golczak, Sahil Gulati, Hong Tang, William Seibel, Xiaoyu Li, Hui Jin, Yong Han, Songqi Gao, Jianye Zhang, Xujie Liu, Hossein Heidari-Torkabadi, Phoebe L Stewart, William E Harte, Gregory P Tochtrop, Krzysztof Palczewski
Rhodopsin homeostasis is tightly coupled to rod photoreceptor cell survival and vision. Mutations resulting in the misfolding of rhodopsin can lead to autosomal dominant retinitis pigmentosa (adRP), a progressive retinal degeneration that currently is untreatable. Using a cell-based high-throughput screen (HTS) to identify small molecules that can stabilize the P23H-opsin mutant, which causes most cases of adRP, we identified a novel pharmacological chaperone of rod photoreceptor opsin, YC-001. As a non-retinoid molecule, YC-001 demonstrates micromolar potency and efficacy greater than 9-cis-retinal with lower cytotoxicity...
May 17, 2018: Nature Communications
Yanan Luan, Xiangpeng Ren, Wu Zheng, Zhenhai Zeng, Yingzi Guo, Zhidong Hou, Wei Guo, Xingjun Chen, Fei Li, Jiang-Fan Chen
Despite converging epidemiological evidence for the inverse relationship of regular caffeine consumption and risk of developing Parkinson's disease (PD) with animal studies demonstrating protective effect of caffeine in various neurotoxin models of PD, whether caffeine can protect against mutant α-synuclein (α-Syn) A53T-induced neurotoxicity in intact animals has not been examined. Here, we determined the effect of chronic caffeine treatment using the α-Syn fibril model of PD by intra-striatal injection of preformed A53T α-Syn fibrils...
2018: Frontiers in Neuroscience
Marius Costel Alupei, Pallab Maity, Philipp Ralf Esser, Ioanna Krikki, Francesca Tuorto, Rosanna Parlato, Marianna Penzo, Adrian Schelling, Vincent Laugel, Lorenzo Montanaro, Karin Scharffetter-Kochanek, Sebastian Iben
Retarded growth and neurodegeneration are hallmarks of the premature aging disease Cockayne syndrome (CS). Cockayne syndrome proteins take part in the key step of ribosomal biogenesis, transcription of RNA polymerase I. Here, we identify a mechanism originating from a disturbed RNA polymerase I transcription that impacts translational fidelity of the ribosomes and consequently produces misfolded proteins. In cells from CS patients, the misfolded proteins are oxidized by the elevated reactive oxygen species (ROS) and provoke an unfolded protein response that represses RNA polymerase I transcription...
May 8, 2018: Cell Reports
Vicente Valenzuela, Kasey L Jackson, Sergio P Sardi, Claudio Hetz
Proteostasis alterations are proposed as a transversal hallmark of several pathological conditions, including metabolic disorders, mechanical injury, cardiac malfunction, neurodegeneration, and cancer. Strategies to improve proteostasis aim to reduce the accumulation of specific disease-related misfolded proteins or bolster the endogenous mechanisms to fold and degrade abnormal proteins. Endoplasmic reticulum (ER) stress is a common pathological signature of a variety of diseases, which engages the unfolded protein response (UPR) as a cellular reaction to mitigate ER stress...
April 7, 2018: Molecular Therapy: the Journal of the American Society of Gene Therapy
David M Pereira, Patrícia Valentão, Paula B Andrade
Misfolding of proteins is the basis of several proteinopathies. Chemical and pharmacological chaperones are small molecules capable of inducing the correct conformation of proteins, thus being of interest for human therapeutics. The most recent developments in medicinal chemistry and in the drug development of pharmacological chaperones are discussed, with focus on lysosomal storage diseases.
February 21, 2018: Chemical Science
Irina V Ekimova, Daria V Plaksina, Yuri F Pastukhov, Ksenia V Lapshina, Vladimir F Lazarev, Elena R Mikhaylova, Sergey G Polonik, Bibhusita Pani, Boris A Margulis, Irina V Guzhova, Evgeny Nudler
Molecular chaperone HSP70 (HSPA1A) has therapeutic potential in conformational neurological diseases. Here we evaluate the neuroprotective function of the chaperone in a rat model of Parkinson's disease (PD). We show that the knock-down of HSP70 (HSPA1A) in dopaminergic neurons of the Substantia nigra causes an almost 2-fold increase in neuronal death and multiple motor disturbances in animals. Conversely, pharmacological activation of HSF1 transcription factor and enhanced expression of inducible HSP70 with the echinochrome derivative, U-133, reverses the process of neurodegeneration, as evidenced by а increase in the number of tyrosine hydroxylase-containing neurons, and prevents the motor disturbances that are typical of the clinical stage of the disease...
April 25, 2018: Experimental Neurology
Michael J Capper, Gareth S A Wright, Letizia Barbieri, Enrico Luchinat, Eleonora Mercatelli, Luke McAlary, Justin J Yerbury, Paul M O'Neill, Svetlana V Antonyuk, Lucia Banci, S Samar Hasnain
Superoxide dismutase-1 (SOD1) mutants, including those with unaltered enzymatic activity, are known to cause amyotrophic lateral sclerosis (ALS). Several destabilizing factors contribute to pathogenicity including a reduced ability to complete the normal maturation process which comprises folding, metal cofactor acquisition, intra-subunit disulphide bond formation and dimerization. Immature SOD1 forms toxic oligomers and characteristic large insoluble aggregates within motor system cells. Here we report that the cysteine-reactive molecule ebselen efficiently confers the SOD1 intra-subunit disulphide and directs correct SOD1 folding, depopulating the globally unfolded precursor associated with aggregation and toxicity...
April 27, 2018: Nature Communications
Robin Didier, Aude Mallavialle, Rania Ben Jouira, Marie Angela Domdom, Mélanie Tichet, Patrick Auberger, Frédéric Luciano, Mickael Ohanna, Sophie Tartare-Deckert, Marcel Deckert
Advanced cutaneous melanoma is one of the most challenging cancers to treat because of its high plasticity, metastatic potential and resistance to treatment. New targeted therapies and immunotherapies have shown remarkable clinical efficacy. However, such treatments are limited to a subset of patients and relapses often occur, warranting validation of novel targeted therapies. Post-translational modification of proteins by ubiquitin coordinates essential cellular functions, including ubiquitin-proteasome system (UPS) function and protein homeostasis...
April 27, 2018: Molecular Cancer Therapeutics
Kaijun Geng, Hongchun Liu, Zilan Song, Chi Zhang, Minmin Zhang, Hong Yang, Jingchen Cao, Meiyu Geng, Aijun Shen, Ao Zhang
Rather than by directly focusing on the ever-changing ALK mutants, here we report an alternative strategy to overcome the drug resistance caused by treatment of ALK inhibitors by developing ALK and Hsp90 dual targeting inhibitors. Since Hsp90 is a molecular chaperone that regulates the maturation, activation and stability of numerous "client proteins" including ALK, dual targeting ALK and Hsp90 may bring more benefits and efficacy against drug resistance of ALK inhibitors. By using our previously developed ALK inhibitor 6 and the clinical Hsp90 inhibitors AUY922 or AT13387 as the templates, we developed several series of resorcinol tethered 2,4-diaminopyrimidines as ALK/Hsp90 dual inhibitors bearing various linkers at different linking sites...
April 11, 2018: European Journal of Medicinal Chemistry
Paul Lebeau, Jae Hyun Byun, Tamana Yousof, Richard C Austin
Mammalian cells express unique transcription factors embedded in the endoplasmic reticulum (ER) membrane, such as the sterol regulatory element-binding proteins (SREBPs), that promote de novo lipogenesis. Upon their release from the ER, the SREBPs require proteolytic activation in the Golgi by site-1-protease (S1P). As such, inhibition of S1P, using compounds such as PF-429242 (PF), reduces cholesterol synthesis and may represent a new strategy for the management of dyslipidemia. In addition to the SREBPs, the unfolded protein response (UPR) transducer, known as the activating transcription factor 6 (ATF6), is another ER membrane-bound transcription factor that requires S1P-mediated activation...
April 21, 2018: Toxicology and Applied Pharmacology
(no author information available yet)
No abstract text is available yet for this article.
April 16, 2018: Journal of Medical Genetics
M López Rodríguez
Fabry disease is an X-linked inborn disease caused by deficit of alpha-galactosidaseA. This results in accumulation of glycosphingolipids in all cells and tissues. All males should receive enzyme replacement treatment in case of very low or undetectable levels of alpha-galactosidaseA. Female carriers and males with marginally levels of alpha-galactosidaseA should be treated in case of renal, neurologic o cardiac manifestations. There are two intravenous formulations of human recombinant enzyme, agalsidase alpha and agalsidase beta, showing similar efficacy and safety...
April 13, 2018: Revista Clínica Española
Guorong Lu, Mary R Tandang-Silvas, Alyssa C Dawson, Trenton J Dawson, Jay C Groppe
Heterotopic ossification (HO), the pathological extraskeletal formation of bone, can arise from blast injuries, severe burns, orthopedic procedures and gain-of-function mutations in a component of the bone morphogenetic protein (BMP) signaling pathway, the ACVR1/ALK2 receptor serine-threonine (protein) kinase, causative of Fibrodysplasia Ossificans Progressiva (FOP). All three ALKs (-2, -3, -6) that play roles in bone morphogenesis contribute to trauma-induced HO, hence are well-validated pharmacological targets...
April 4, 2018: Bone
Irene Simonetta, Antonino Tuttolomondo, Tiziana Di Chiara, Salvatore Miceli
Fabry's disease is a genetic disorder of X-linked inheritance caused by mutations in the alpha galactosidase A gene resulting in deficiency of this lysosomal enzyme. The progressive accumulation of glycosphingolipids, caused by the inadequate enzymatic activity, is responsible of organ dysfunction and thus of clinical manifestations. In presence of a high clinical suspicion, a careful physical examination and specific laboratory tests are required, finally diagnosis of Fabry's disease is confirmed by demonstration of absence or reduced alpha galactosidase A enzyme activity in hemizygous men and gene typing in heterozygous females; in fact the performance of enzymatic activity assay alone in women is inconclusive...
April 4, 2018: Current Gene Therapy
Daniel Mattle, Bernd Kuhn, Johannes Aebi, Marc Bedoucha, Demet Kekilli, Nathalie Grozinger, Andre Alker, Markus G Rudolph, Georg Schmid, Gebhard F X Schertler, Michael Hennig, Jörg Standfuss, Roger J P Dawson
In the degenerative eye disease retinitis pigmentosa (RP), protein misfolding leads to fatal consequences for cell metabolism and rod and cone cell survival. To stop disease progression, a therapeutic approach focuses on stabilizing inherited protein mutants of the G protein-coupled receptor (GPCR) rhodopsin using pharmacological chaperones (PC) that improve receptor folding and trafficking. In this study, we discovered stabilizing nonretinal small molecules by virtual and thermofluor screening and determined the crystal structure of pharmacologically stabilized opsin at 2...
March 19, 2018: Proceedings of the National Academy of Sciences of the United States of America
Seung Un Seo, Seon Min Woo, Kyoung-Jin Min, Taeg Kyu Kwon
Inhibition of cathespsin S not only inhibits invasion and angiogenesis, but also induces apoptosis and autophagy in cancer cells. In present study, we revealed that pharmacological inhibitor [Z-FL-COCHO (ZFL)] of cathepsin S up-regulates pro-apoptotic protein Bim expression at the posttranslational levels. These effects were not associated with MAPKs and AMPK signal pathways. Interestingly, pretreatment with the chemical chaperones (TUDCA and PBA) and knockdown of protein phosphatase 2A (PP2A) markedly inhibited ZFL-induced Bim upregulation...
April 15, 2018: Biochemical and Biophysical Research Communications
Duarte Mateus, Elettra Sara Marini, Cinzia Progida, Oddmund Bakke
The Endoplasmic Reticulum (ER) is a membranous organelle with diverse structural and functional domains. Peripheral ER includes interconnected tubules, and dense tubular arrays called "ER matrices" together with bona fide flat cisternae. Transitions between these states are regulated by membrane-associated proteins and cytosolic factors. Recently, the small GTPases Rab10 and Rab18 were reported to control ER shape by regulating ER dynamics and fusion. Here, we present evidence that another Rab protein, Rab7a, modulates the ER morphology by controlling the ER homeostasis and ER stress...
May 2018: Biochimica et Biophysica Acta
Xiao-Xue Yang, Yu Zhang, Yue-Him Wong, Pei-Yuan Qian
The larvae of many sessile marine invertebrates go through a settlement process, during which planktonic larvae attach to a substrate and metamorphose into sessile juveniles. Larval attachment and metamorphosis (herein defined as 'settlement') are complex processes mediated by many signalling pathways. Nitric oxide (NO) signalling is one of the pathways that inhibits larval settlement in marine invertebrates across different phyla. NO is synthesized by NO synthase (NOS), which is a client of the molecular chaperone heat shock protein 90 (HSP90)...
April 23, 2018: Journal of Experimental Biology
Silvia Cerri, Fabio Blandini
Autophagy is an essential catabolic mechanism that delivers misfolded proteins and damaged organelles to the lysosome for degradation. Autophagy pathways include macroautophagy, chaperone-mediated autophagy and microautophagy, each involving different mechanisms of substrate delivery to lysosome. Defects of these pathways and the resulting accumulation of protein aggregates represent a common pathobiological feature of neurodegenerative disorders such as Alzheimer, Parkinson and Huntington disease. This review provides an overview of the role of autophagy in Parkinson's disease (PD) by summarizing the most relevant genetic and experimental evidence showing how this process can contribute to disease pathogenesis...
February 25, 2018: Current Medicinal Chemistry
Lorenzo Ferri, Duccio Malesci, Antonella Fioravanti, Gaia Bagordo, Armando Filippini, Anna Ficcadenti, Raffaele Manna, Daniela Antuzzi, Elena Verrecchia, Ilaria Donati, Renzo Mignani, Catia Cavicchi, Renzo Guerrini, Amelia Morrone
BACKGROUND: Allelic heterogeneity is an important feature of the GLA gene for which almost 900 known genetic variants have been discovered so far. Pathogenetic GLA variants cause alpha-galactosidase A (α-Gal A) enzyme deficiency leading to the X-linked lysosomal storage disorder Fabry disease (FD). Benign GLA intronic and exonic variants (e.g. pseudodeficient p.Asp313Tyr) have also been described. Some GLA missense variants, previously deemed to be pathogenetic (e.g. p.Glu66Gln and p...
June 2018: Clinica Chimica Acta; International Journal of Clinical Chemistry
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"