Read by QxMD icon Read

Pharmacological chaperones

Daniel Mattle, Bernd Kuhn, Johannes Aebi, Marc Bedoucha, Demet Kekilli, Nathalie Grozinger, Andre Alker, Markus G Rudolph, Georg Schmid, Gebhard F X Schertler, Michael Hennig, Jörg Standfuss, Roger J P Dawson
In the degenerative eye disease retinitis pigmentosa (RP), protein misfolding leads to fatal consequences for cell metabolism and rod and cone cell survival. To stop disease progression, a therapeutic approach focuses on stabilizing inherited protein mutants of the G protein-coupled receptor (GPCR) rhodopsin using pharmacological chaperones (PC) that improve receptor folding and trafficking. In this study, we discovered stabilizing nonretinal small molecules by virtual and thermofluor screening and determined the crystal structure of pharmacologically stabilized opsin at 2...
March 19, 2018: Proceedings of the National Academy of Sciences of the United States of America
Seung Un Seo, Seon Min Woo, Kyoung-Jin Min, Taeg Kyu Kwon
Inhibition of cathespsin S not only inhibits invasion and angiogenesis, but also induces apoptosis and autophagy in cancer cells. In present study, we revealed that pharmacological inhibitor [Z-FL-COCHO (ZFL)] of cathepsin S up-regulates pro-apoptotic protein Bim expression at the posttranslational levels. These effects were not associated with MAPKs and AMPK signal pathways. Interestingly, pretreatment with the chemical chaperones (TUDCA and PBA) and knockdown of protein phosphatase 2A (PP2A) markedly inhibited ZFL-induced Bim upregulation...
March 10, 2018: Biochemical and Biophysical Research Communications
Duarte Mateus, Elettra Sara Marini, Cinzia Progida, Oddmund Bakke
The Endoplasmic Reticulum (ER) is a membranous organelle with diverse structural and functional domains. Peripheral ER includes interconnected tubules, and dense tubular arrays called "ER matrices" together with bona fide flat cisternae. Transitions between these states are regulated by membrane-associated proteins and cytosolic factors. Recently, the small GTPases Rab10 and Rab18 were reported to control ER shape by regulating ER dynamics and fusion. Here, we present evidence that another Rab protein, Rab7a, modulates the ER morphology by controlling the ER homeostasis and ER stress...
March 2, 2018: Biochimica et Biophysica Acta
Xiao-Xue Yang, Yu Zhang, Yue-Him Wong, Pei-Yuan Qian
The larvae of many sessile marine invertebrates go through a settlement process, during which the planktonic larvae attach to a substrate and metamorphose into sessile juveniles. Larval attachment and metamorphosis (herein defined as "settlement") are complex processes mediated by many signaling pathways. Nitric oxide (NO) signaling is one of the pathways that inhibits larval settlement in marine invertebrates across different phyla. NO is synthesized by NO synthase (NOS), which is a client of molecular chaperon heat shock protein 90 (HSP90)...
February 27, 2018: Journal of Experimental Biology
Silvia Cerri, Fabio Blandini
Autophagy is an essential catabolic mechanism that delivers misfolded proteins and damaged organelles to the lysosome for degradation. Autophagy pathways include macroautophagy, chaperone-mediated autophagy and microautophagy, each involving different mechanisms of substrate delivery to lysosome. Defects of these pathways and the resulting accumulation of protein aggregates represent a common pathobiological feature of neurodegenerative disorders such as Alzheimer, Parkinson and Huntington disease. This review provides an overview of the role of autophagy in Parkinson's disease (PD) by summarizing the most relevant genetic and experimental evidence showing how this process can contribute to disease pathogenesis...
February 25, 2018: Current Medicinal Chemistry
Lorenzo Ferri, Duccio Malesci, Antonella Fioravanti, Gaia Bagordo, Armando Filippini, Anna Ficcadenti, Raffaele Manna, Daniela Antuzzi, Elena Verrecchia, Ilaria Donati, Renzo Mignani, Catia Cavicchi, Renzo Guerrini, Amelia Morrone
BACKGROUND: Allelic heterogeneity is an important feature of the GLA gene for which almost 900 known genetic variants have been discovered so far. Pathogenetic GLA variants cause alpha-galactosidase A (α-Gal A) enzyme deficiency leading to the X-linked lysosomal storage disorder Fabry disease (FD). Benign GLA intronic and exonic variants (e.g. pseudodeficient p.Asp313Tyr) have also been described. Some GLA missense variants, previously deemed to be pathogenetic (e.g. p.Glu66Gln and p...
February 21, 2018: Clinica Chimica Acta; International Journal of Clinical Chemistry
Daniel Hughes, Giovanna R Mallucci
The unfolded protein response (UPR) is a highly conserved protein quality control mechanism, activated in response to Endoplasmic Reticulum (ER) stress. Signaling is mediated through three branches, PERK, IRE1 and ATF6, respectively, that together provide a coordinated response that contributes to overcoming disrupted proteostasis. PERK branch activation predominantly causes a rapid reduction in global rates of translation, whilst the IRE1 and ATF6 branch signaling induce a transcriptional response resulting in expression of chaperones and components of the protein degradation machinery...
February 24, 2018: FEBS Journal
Carmen Ruggiero, Mabrouka Doghman-Bouguerra, Cyril Ronco, Rachid Benhida, Stéphane Rocchi, Enzo Lalli
Many types of cancer cells present constitutively activated ER stress pathways because of their significant burden of misfolded proteins coded by mutated and rearranged genes. Further increase of ER stress by pharmacological intervention may shift the balance towards cell death and can be exploited therapeutically. Recent studies have shown that an important component in the mechanism of action of mitotane, the only approved drug for the medical treatment of adrenocortical carcinoma (ACC), is represented by activation of ER stress through inhibition of the SOAT1 enzyme and accumulation of toxic lipids...
February 20, 2018: Molecular and Cellular Endocrinology
Yasuyuki Suzuki, Tomio Ogasawara, Yuki Tanaka, Hiroyuki Takeda, Tatsuya Sawasaki, Masaki Mogi, Shuang Liu, Kazutaka Maeyama
G-protein-coupled receptors (GPCRs) are membrane proteins distributed on the cell surface, and they may be potential drug targets. However, synthesizing GPCRs in vitro can be challenging. Recently, some cell-free protein synthesis systems have been shown to produce a large amount of membrane protein combined with chemical chaperones that include liposomes and glycerol. Liposomes containing high concentrations of glycerol are known as glycerosomes, which are used in new drug delivery systems. Glycerosomes have greater morphological stability than liposomes...
2018: Frontiers in Pharmacology
Chandan Kanta Das, Benedikt Linder, Florian Bonn, Florian Rothweiler, Ivan Dikic, Martin Michaelis, Jindrich Cinatl, Mahitosh Mandal, Donat Kögel
Target-specific treatment modalities are currently not available for triple-negative breast cancer (TNBC), and acquired chemotherapy resistance is a primary obstacle for the treatment of these tumors. Here we employed derivatives of BT-549 and MDA-MB-468 TNBC cell lines that were adapted to grow in the presence of either 5-Fluorouracil, Doxorubicin or Docetaxel in an aim to identify molecular pathways involved in the adaptation to drug-induced cell killing. All six drug-adapted BT-549 and MDA-MB-468 cell lines displayed cross resistance to chemotherapy and decreased apoptosis sensitivity...
February 17, 2018: Neoplasia: An International Journal for Oncology Research
Ji-Qiang Liu, Li Zhang, Ji Yao, Shuo Yao, Ting Yuan
Chronic obstructive pulmonary disease (COPD), is characterized by inflammation of airways accompanied by a progressive destruction of lung parenchyma. This process is initiated in most cases by cigarette smoking. In this study we investigated the role of AMP activated protein kinase (AMPK) in cigarette smoke extract (CSE)-induced airway epithelial cell apoptosis as a consequence of endoplasmic reticulum stress (ER stress). Exposure of human bronchial epithelial cells (HBEpC) to CSE resulted in apoptosis as detected using Annexin V-PI flow cytometry...
February 12, 2018: Biochemical and Biophysical Research Communications
Ya-Xiong Tao, P Michael Conn
After synthesis, proteins are folded into their native conformations aided by molecular chaperones. Dysfunction in folding caused by genetic mutations in numerous genes causes protein conformational diseases. Membrane proteins are more prone to misfolding due to their more intricate folding than soluble proteins. Misfolded proteins are detected by the cellular quality control systems, especially in the endoplasmic reticulum, and proteins may be retained there for eventual degradation by the ubiquitin-proteasome system or through autophagy...
April 1, 2018: Physiological Reviews
Jong Youl Kim, Yeonseung Han, Jong Eun Lee, Midori A Yenari
The 70-kDa heat shock protein (Hsp70) is a cytosolic chaperone which facilitates protein folding, degradation, complex assembly, and translocation. Following stroke, these functions have the potential to lead to cytoprotection, and this has been demonstrated using genetic mutant models, direct gene transfer or the induction of Hsp70 via heat stress, approaches which limit its translational utility. Recently, the investigation of Hsp70-inducing pharmacological compounds, which, through their ability to inhibit Hsp90, has obvious clinical implications in terms of potential therapies to mitigate cell death and inflammation, and lead to neuroprotection from brain injury...
February 8, 2018: Expert Opinion on Therapeutic Targets
Hideaki Yano, Alessandro Bonifazi, Min Xu, Daryl A Guthrie, Stephanie N Schneck, Ara M Abramyan, Andrew D Fant, W Conrad Hong, Amy H Newman, Lei Shi
The sigma 1 receptor (σ1R) is a structurally unique transmembrane protein that functions as a molecular chaperone in the endoplasmic reticulum (ER), and has been implicated in cancer, neuropathic pain, and psychostimulant abuse. Despite physiological and pharmacological significance, mechanistic underpinnings of structure-function relationships of σ1R are poorly understood, and molecular interactions of selective ligands with σ1R have not been elucidated. The recent crystallographic determination of σ1R as a homo-trimer provides the foundation for mechanistic elucidation at the molecular level...
January 30, 2018: Neuropharmacology
Dustin Je Huard, Vincent M Crowley, Yuhong Du, Ricardo A Cordova, Zheying Sun, Moya O Tomlin, Chad A Dickey, John Koren, Laura Blair, Haian Fu, Brian S J Blagg, Raquel L Lieberman
Gain-of-function mutations within the olfactomedin (OLF) domain of myocilin result in its toxic intracellular accumulation and hastens the onset of open-angle glaucoma. The absence of myocilin does not cause disease; therefore, strategies aimed at eliminating myocilin could lead to a successful glaucoma treatment. The endoplasmic reticulum Hsp90 paralog Grp94 accelerates OLF aggregation. Knockdown or pharmacological inhibition of Grp94 in cells facilitates clearance of mutant myocilin via a non-proteasomal pathway...
February 5, 2018: ACS Chemical Biology
Roberta Balestrino, Anthony H V Schapira
Parkinson disease (PD) is a complex neurodegenerative disease characterised by multiple motor and non-motor symptoms. In the last 20 years, more than 20 genes have been identified as causes of parkinsonism. Following the observation of higher risk of PD in patients affected by Gaucher disease, a lysosomal disorder caused by mutations in the glucocerebrosidase (GBA) gene, it was discovered that mutations in this gene constitute the single largest risk factor for development of idiopathic PD. Patients with PD and GBA mutations are clinically indistinguishable from patients with idiopathic PD, although some characteristics emerge depending on the specific mutation, such as slightly earlier onset...
February 1, 2018: Neuroscientist: a Review Journal Bringing Neurobiology, Neurology and Psychiatry
Richa Sharma, Mukund M D Pramanik, Balasubramanian Chandramouli, Namrata Rastogi, Niti Kumar
Dysfunctional organellar protein quality control machinery leads to protein misfolding associated cardiovascular, neurodegenerative, metabolic and secretory disorders. To understand organellar homeostasis, suitable tools are required which can sense changes in their respective protein folding capacity upon exposure to environmental and pharmacological perturbations. Herein, we have assessed protein folding capacity of cellular organelles using a metastable sensor selectively targeted to cytosol, nucleus, mitochondria, endoplasmic reticulum, golgi and peroxisomes...
January 10, 2018: European Journal of Cell Biology
Len Neckers, Brian Blagg, Timothy Haystead, Jane B Trepel, Luke Whitesell, Didier Picard
The molecular chaperone Hsp90 is one component of a highly complex and interactive cellular proteostasis network (PN) that participates in protein folding, directs misfolded and damaged proteins for destruction, and participates in regulating cellular transcriptional responses to environmental stress, thus promoting cell and organismal survival. Over the last 20 years, it has become clear that various disease states, including cancer, neurodegeneration, metabolic disorders, and infection by diverse microbes, impact the PN...
February 1, 2018: Cell Stress & Chaperones
Botond Penke, Ferenc Bogár, Tim Crul, Miklós Sántha, Melinda E Tóth, László Vígh
Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease and Huntington's disease (HD), amyotrophic lateral sclerosis, and prion diseases are all characterized by the accumulation of protein aggregates (amyloids) into inclusions and/or plaques. The ubiquitous presence of amyloids in NDDs suggests the involvement of disturbed protein homeostasis (proteostasis) in the underlying pathomechanisms. This review summarizes specific mechanisms that maintain proteostasis, including molecular chaperons, the ubiquitin-proteasome system (UPS), endoplasmic reticulum associated degradation (ERAD), and different autophagic pathways (chaperon mediated-, micro-, and macro-autophagy)...
January 22, 2018: International Journal of Molecular Sciences
Danielle O Sambo, Joseph J Lebowitz, Habibeh Khoshbouei
Methamphetamine (METH) abuse is a major public health issue around the world, yet there are currently no effective pharmacotherapies for the treatment of METH addiction. METH is a potent psychostimulant that increases extracellular dopamine levels by targeting the dopamine transporter (DAT) and alters neuronal activity in the reward centers of the brain. One promising therapeutic target for the treatment of METH addiction is the sigma-1 receptor (σ1R). The σ1R is an endoplasmic reticulum-localized chaperone protein that is activated by cellular stress, and, unique to this chaperone, its function can also be induced or inhibited by different ligands...
January 22, 2018: Pharmacology & Therapeutics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"