Read by QxMD icon Read

anticancer drug research

Le Zhang, Yunshan Zhao, Zhipeng A Wang, Kunhua Wei, Bin Qiu, Chunhong Zhang, QiYan Wang-Müller, Minhui Li
ETHNOPHARMACOLOGICAL RELEVANCE: As a group of important medicine plants, Boschniakia rossica (Cham. et Schltdl) Fedtsch. and B. himalaica Thoms, which are the only two species in the genus Boschniakia (Orobanchaceae), have long been used in traditional Chinese medicine for their multiple therapeutic uses related to enhanced renal function, erectile dysfunction, defaecate and hepatoprotective. Additionally, the two species are also used as dietary supplements in wine, cosmetics, and other healthy food...
October 20, 2016: Journal of Ethnopharmacology
Anil K Deshantri, Sander A A Kooijmans, Sylvia A Kuijpers, Maria Coimbra, Astrid Hoeppener, Gert Storm, Marcel H A M Fens, Raymond M Schiffelers
Cancers are abundantly infiltrated by inflammatory cells that are modulated by tumor cells to secrete mediators fostering tumor cell survival and proliferation. Therefore, agents that interfere with inflammatory signaling molecules or specific immune cell populations have been investigated as anticancer drugs. Corticosteroids are highly potent anti-inflammatory drugs, whose activity is intensified when targeted by nanocarrier systems. Liposome-targeted corticosteroids have been shown to inhibit tumor growth in different syngeneic murine tumor models as well as human xenograft mouse models, which is attributed to a switch in the tumor microenvironment from a pro-inflammatory to an anti-inflammatory state...
October 20, 2016: Journal of Controlled Release: Official Journal of the Controlled Release Society
Fan-Shiu Tsai, Li-Wei Lin, Chi-Rei Wu
Lupeol belongs to pentacyclic lupane-type triterpenes and exhibits in edible vegetables, fruits and many plants. Many researches indicated that lupeol possesses many beneficial pharmacological activities including antioxidant, anti-inflammatory, anti-hyperglycemic, anti-dyslipidemic and anti-mutagenic effects. From various disease-targeted animal models, these reports indicated that lupeol has anti-diabetic, anti-asthma, anti-arthritic, cardioprotective, hepatoprotective, nephroprotective, neuroprotective and anticancer efficiency under various routes of administration such as topical, oral, subcutaneous, intraperitoneal and intravenous...
2016: Advances in Experimental Medicine and Biology
Aurélie Stallivieri, Ludovic Colombeau, Gulim Jetpisbayeva, Albert Moussaron, Bauyrzhan Myrzakhmetov, Philippe Arnoux, Samir Acherar, Régis Vanderesse, Céline Frochot
Recent researches in photodynamic therapy have focused on novel techniques to enhance tumour targeting of anticancer drugs and photosensitizers. Coupling a photosensitizer with folic acid could allow more effective targeting of folate receptors which are over-expressed on the surface of many tumour cells. In this study, different folic acid-OEG-conjugated photosensitizers were synthesized, characterized and their photophysical properties were evaluated. The introduction of an OEG does not significantly improve the hydrophilicity of the FA-porphyrin...
October 10, 2016: Bioorganic & Medicinal Chemistry
Ronit Weisman
All organisms can respond to the availability of nutrients by regulating their metabolism, growth, and cell division. Central to the regulation of growth in response to nutrient availability is the target of rapamycin (TOR) signaling that is composed of two structurally distinct complexes: TOR complex 1 (TORC1) and TOR complex 2 (TORC2). The TOR genes were first identified in yeast as target of rapamycin, a natural product of a soil bacterium, which proved beneficial as an immunosuppressive and anticancer drug and is currently being tested for a handful of other pathological conditions including diabetes, neurodegeneration, and age-related diseases...
October 2016: Microbiology Spectrum
Man Kyu Shim, Hong Yeol Yoon, Ju Hee Ryu, Heebeom Koo, Sangmin Lee, Jae Hyung Park, Jong-Ho Kim, Seulki Lee, Martin G Pomper, Ick Chan Kwon, Kwangmeyung Kim
Recently, metabolic glycoengineering with bioorthogonal click reactions has focused on improving the tumor targeting efficiency of nanoparticles as delivery vehicles for anticancer drugs or imaging agents. It is the key technique for developing tumor-specific metabolic precursors that can generate unnatural glycans on the tumor-cell surface. A cathepsin B-specific cleavable substrate (KGRR) conjugated with triacetylated N-azidoacetyl-d-mannosamine (RR-S-Ac3 ManNAz) was developed to enable tumor cells to generate unnatural glycans that contain azide groups...
October 20, 2016: Angewandte Chemie
Xiang-Jun Tang, Kuan-Ming Huang, Hui Gui, Jun-Jie Wang, Jun-Ti Lu, Long-Jun Dai, Li Zhang, Gang Wang
As one of the natural herbal flavonoids, myricetin has attracted much research interest, mainly owing to its remarkable anticancer properties and negligible side effects. It holds great potential to be developed as an ideal anticancer drug through improving its bioavailability. This study was performed to investigate the effects of Pluronic-based micelle encapsulation on myricetin-induced cytotoxicity and the mechanisms underlying its anticancer properties in human glioblastoma cells. Cell viability was assessed using a methylthiazol tetrazolium assay and a real-time cell analyzer...
2016: International Journal of Nanomedicine
Jae-Woo Jang, Yeonhwa Song, Kang Mo Kim, Jin-Sun Kim, Eun Kyung Choi, Joon Kim, Haengran Seo
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignant cancers worldwide and is associated with substantial mortality. Because HCCs have strong resistance to conventional chemotherapeutic agents, novel therapeutic strategies are needed to improve survival in HCC patients. METHODS: Here, we developed a fluorescence image-based phenotypic screening system in vitro to identify HCC-specific drugs in co-cultures of HCC cells with hepatocytes. To this end, we identified two distinctive markers of HCC, CHALV1 and AFP, which are highly expressed in HCC cell lines and liver cancer patient-derived materials...
October 18, 2016: BMC Cancer
Mirela Enache, Ana Maria Toader, Madalin Iancu Enache
Mitoxantrone is a synthetic anticancer drug used clinically in the treatment of different types of cancer. It was developed as a doxorubicin analogue in a program to find drugs with improved antitumor activity and decreased cardiotoxicity compared with the anthracyclines. As the cell membrane is the first barrier encountered by anticancer drugs before reaching the DNA sites inside the cells and as surfactant micelles are known as simple model systems for biological membranes, the drugs-surfactant interaction has been the subject of great research interest...
October 13, 2016: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
Shuitu Feng, Zhigao Zheng, Lihua Feng, Lihong Yang, Zuhong Chen, Yubiao Lin, Yingqin Gao, Yide Chen
The cancer stem cell (CSC) model suggests that a small subset of cancer cells possess stem cell properties and plays a crucial role in tumor initiation, metastasis and resistance to anticancer therapy. Exploration of the specific therapies targeting at CSCs has been a crucial issue in antitumor research. Gastric cancer (GC) cells often exist in an ischemic microenvironment with acidic conditions in vivo, thus maintenance of cellular pH homeostasis is important for the survival and function of GC cells. Proton pump inhibitors (PPIs) may prevent intracellular proton extrusions which consequently reduce cancer cell survival under acidic conditions...
October 7, 2016: Oncology Reports
Luigi Sapio, Monica Gallo, Michela Illiano, Emilio Chiosi, Daniele Naviglio, Annamaria Spina, Silvio Naviglio
Cancer is a major public health problem and the second leading cause of mortality around the world. Although continuous advances in the science of oncology and cancer research are now leading to improved outcomes for many cancer patients, novel cancer treatment options are strongly demanded. Naturally occurring compounds from a variety of vegetables, fruits and medicinal plants have been shown to exhibit various anticancer properties in a number of in vitro and in vivo studies and represent an attractive research area for the development of new therapeutic strategies to fight cancer...
October 14, 2016: Journal of Cellular Physiology
Xingliang Dai, Cheng Ma, Qing Lan, Tao Xu
Glioma is still difficult to treat because of its high malignancy, high recurrence rate, and high resistance to anticancer drugs. An alternative method for research of gliomagenesis and drug resistance is to use in vitro tumor model that closely mimics the in vivo tumor microenvironment. In this study, we established a 3D bioprinted glioma stem cell model, using modified porous gelatin/alginate/fibrinogen hydrogel that mimics the extracellular matrix. Glioma stem cells achieved a survival rate of 86.92%, and proliferated with high cellular activity immediately following bioprinting...
October 11, 2016: Biofabrication
Melani Sooriyaarachchi, Graham N George, Ingrid J Pickering, Aru Narendran, Jürgen Gailer
Numerous in vivo studies have shown that the severe toxic side-effects of intravenously administered cisplatin can be significantly reduced by the co-administration of sulfur-containing 'chemoprotective agents'. Using a metallomics approach, a likely biochemical basis for these potentially useful observations was only recently uncovered and appears to involve the reaction of chemoprotective agents with cisplatin-derived Pt-species in human plasma to form novel platinum-sulfur complexes (PSC's). We here reveal aspects of the structure of two PSC's and establish the identification of an optimal chemoprotective agent to ameliorate the toxic side-effects of cisplatin, while leaving its antineoplastic activity largely intact, as a feasible research strategy to transform cisplatin into a safer and more effective anticancer drug...
October 10, 2016: Metallomics: Integrated Biometal Science
Debasis Nayak, Manisha Kumari, Sripathi Rajachandar, Sarbani Ashe, Neethi Chandra Thathapudi, Bismita Nayak
Reactive oxygen species (ROS) are double edged sword that possesses both beneficial and harmful effects. Although basic research on skin cancer prevention has undergone a huge transformation, cases of recurrence with higher rates of drug resistance are some of its drawbacks. Therefore, targeting mitochondria by ROS overproduction provides an alternate approach for anticancer therapy. In the present study green synthesized silver nanoparticles (AgNPs) were explored for triggering the ROS production in A431 skin carcinoma cells...
October 7, 2016: ACS Applied Materials & Interfaces
Narayanasamy Badrinath, Jeong Heo, So Young Yoo
Oncolytic virotherapy, a type of nanomedicine in which oncolytic viruses (OVs) are used to selectively infect and lyse cancer cells, is an emerging field in cancer therapy. Some OVs exhibit a specific tropism for cancer cells, whereas others require genetic modification to enhance their binding with and entry into cancer cells. OVs both kill tumor cells and induce the host's immune response against tumor cells. Armed with antitumor cellular molecules, antibodies, and/or in combination with anticancer drugs, OVs can accelerate the lysis of cancer cells...
2016: International Journal of Nanomedicine
May S Freag, Yosra Sr Elnaggar, Doaa A Abdelmonsif, Ossama Y Abdallah
Recently, research has progressively highlighted on clues from conventional use of herbal medicines to introduce new anticancer drugs. Aloe-emodin (AE) is a herbal drug with promising anticancer activity. Nevertheless, its clinical utility is handicapped by its low solubility. For the first time, this study aims to the fabrication of surface-functionalized polyethylene glycol liquid crystalline nanoparticles (PEG-LCNPs) of AE to enhance its water solubility and enable its anticancer use. Developed AE-PEG-LCNPs were optimized via particle size and zeta potential measurements...
2016: International Journal of Nanomedicine
Michelle de Oliveira Pedrosa, Rayssa Marques Duarte da Cruz, Jéssika Oliveira Viana, Ricardo Olímpio de Moura, Hamilton Mitsugu Ishiki, José Maria Barbosa Filho, Margareth F F M Diniz, Marcus Tullius Scotti, Luciana Scotti, Francisco Jaime Bezerra Mendonça
Molecular Hybridization is an approach in rational drug design where new chemical entities are obtained by combining two or more pharmacophoric units from different bioactive compounds into a single molecule. Through this approach, medicinal chemists hope that the new hybrid derivative presents: better affinity and efficacy when compared to the parent drugs; a modified selectivity profile with improvement over pharmacokinetic and pharmacodynamic restrictions; dual or multiple modes of action; reduction of undesirable side effects; decreases in drug-drug interactions; reduced emergence or spread of drug resistance in microorganisms and protozoans; and lower cost...
September 27, 2016: Current Topics in Medicinal Chemistry
Dan Long, Tianlong Liu, Longfei Tan, Haitang Shi, Ping Liang, Shunsong Tang, Qiong Wu, Jie Yu, Jianping Dou, Xianwei Meng
Microwave (MW) therapy, as a promising type of thermal therapy, has been attracting more and more attention from scientists. The combination of thermal and chemotherapy is of great significance in the latest studies of synergistic tumor therapy. However, the research on the MW therapy mechanism, especially the nonthermal effect applied in the combined cancer therapy, is not thorough enough. Pleasantly, we have discovered that nonthermal MW irradiation can promote the cellular uptake of nanoparticles and anticancer drugs via experiments in vitro and in vivo...
October 5, 2016: ACS Nano
Sergey S Laev, Nariman F Salakhutdinov, Olga I Lavrik
DNA topoisomerases are essential during transcription and replication. The therapeutic mechanism of action of topoisomerase inhibitors is enzyme poisoning rather than catalytic inhibition. Tyrosyl-DNA phosphodiesterases 1 or 2 were found as DNA repair enzymes hydrolyzing the covalent bond between the tyrosyl residue of topoisomerases I or II and the 3'- or 5'-phosphate groups in DNA, respectively. Tyrosyl-DNA phosphodiesterase 1 is a key enzyme in DNA repair machinery and a promising target for antitumor and neurodegenerative therapy...
November 1, 2016: Bioorganic & Medicinal Chemistry
George D Geromichalos, Constantinos E Alifieris, Elena G Geromichalou, Dimitrios T Trafalis
Conventional drug design embraces the "one gene, one drug, one disease" philosophy. Nowadays, new generation of anti- cancer drugs, able to inhibit more than one pathway, is believed to play a major role in contemporary anticancer drug research. In this way, polypharmacology, focusing on multi-target drugs, has emerged as a new paradigm in drug discovery. A number of recent successful drugs have in part or in whole emerged from a structure-based research approach. Many advances including crystallography and informatics are behind these successes...
July 2016: Journal of B.U.ON.: Official Journal of the Balkan Union of Oncology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"