Read by QxMD icon Read

heart and endoplasmic reticulum

Zhideng Lin, Yisheng Huang, Weiguang Zou, Hua Rong, Meiling Hao, Xiaobo Wen
Enzymes that lengthen the carbon chain of polyunsaturated fatty acids (PUFA) are key to the biosynthesis of the long-chain polyunsaturated fatty acids (LC-PUFA). Here we report on the molecular cloning, tissue distribution, functional characterization and nutritional regulation of a elovl5 gene from Nibea coibor. The full-length cDNA was 1315 bp, including a 5-untranslated region (UTR) of 134 bp, a 3-UTR of 296 bp and an open reading frame of 885 bp, which specified a peptide of 294 amino acids. Bioinformatics analysis showed that the deduced peptide sequence possessed all the characteristic features of microsomal fatty acyl elongases, including the so-called histidine box (HXXHH), the canonical C-terminal endoplasmic reticulum retention signal, several predicted transmembrane regions and other highly conserved motifs...
March 16, 2018: Gene
Meng-Lin Liu, Meng-Long Wang, Jing-Jun Lv, Jie Wei, Jun Wan
Adriamycin (ADR) is a chemotherapeutic drug used to treat tumors in a clinical setting. However, its use is limited by a side effect of cardiotoxicity. Glibenclamide (Gli), an inhibitor of mitochondrial ATP-dependent potassium (K-ATP) channels, blocks the cardioprotective effects of mitochondrial K-ATP channel openers and induces apoptosis in rodent pancreatic islet β-cell lines. However, little is known about the role of Gli in ADR-induced cardiotoxicity. The present study was designed to investigate the impact of Gli on ADR-induced cardiotoxicity in rats...
April 2018: Experimental and Therapeutic Medicine
Ying-Chun Shih, Chao-Ling Chen, Yan Zhang, Rebecca L Mellor, Evelyn M Kanter, Yun Fang, Hua-Chi Wang, Chen-Ting Hung, Jing-Yi Nong, Hui-Ju Chen, Tzu-Han Lee, Yi-Shuan Tseng, Chiung-Nien Chen, Chau-Chung Wu, Shuei-Liong Lin, Kathryn A Yamada, Jeanne M Nerbonne, Kai-Chien Yang
<u>Rationale:</u> Cardiac fibrosis plays a critical role in the pathogenesis of heart failure (HF). Excessive accumulation of extracellular matrix (ECM) resulting from cardiac fibrosis impairs cardiac contractile function and increases arrhythmogenicity. Current treatment options for cardiac fibrosis, however, are limited and there is a clear need to identify novel mediators of cardiac fibrosis to facilitate the development of better therapeutics. Exploiting co-expression gene network analysis on RNA sequencing data from failing human heart, we identified thioredoxin domain containing 5 (TXNDC5), a cardiac fibroblast (CF)-enriched endoplasmic reticulum (ER) protein, as a potential novel mediator of cardiac fibrosis and we completed experiments to test this hypothesis directly...
March 13, 2018: Circulation Research
Meiling Yan, Kankai Chen, Li He, Shuai Li, Dong Huang, Jingbo Li
BACKGROUND/AIMS: Hyperuricemia is associated with an increased risk for multiple cardiovascular diseases, but the underlying mechanisms remain largely elusive. Calpain-1 is a protease that is implicated in several pathological conditions that affect the heart. The aim of this current study was to test the effects of uric acid (UA) on cardiomyocyte survival and cardiac function and to investigate the role of calpain-1 in the UA-induced effects in the heart and their underlying mechanisms...
March 7, 2018: Cellular Physiology and Biochemistry
N Zhao, L Mi, X J Zhang, M Y Xu, H Y Yu, Z W Liu, X J Liu, G C Guan, W Gao, J K Wang
MicroRNA 711 (miR-711) levels in the heart change dynamically after myocardial infarction (MI). As peroxisome proliferator-activated receptor gamma (PPARγ) can upregulate miR-711 in adipocytes and cardiac fibroblasts, this study examined the precise mechanism of PPARγ-mediated miR-711 upregulation and its role in the heart in the early stages after MI. In a rat model of MI induced by left anterior descending coronary artery ligation, immunohistochemical and western blot analyses revealed increased PPARγ expression in cardiomyocyte nuclei after MI...
March 6, 2018: Journal of Molecular and Cellular Cardiology
Michela Pecoraro, Michele Ciccarelli, Antonella Fiordelisi, Guido Iaccarino, Aldo Pinto, Ada Popolo
Doxorubicin (DOXO) administration induces alterations in Connexin 43 (Cx43) expression and localization, thus, inducing alterations in chemical and electrical signal transmission between cardiomyocytes and in intracellular calcium homeostasis even evident after a single administration. This study was designed to evaluate if Diazoxide (DZX), a specific opener of mitochondrial KATP channels widely used for its cardioprotective effects, can fight DOXO-induced cardiotoxicity in a short-time mouse model. DZX (20 mg/kg i...
March 7, 2018: International Journal of Molecular Sciences
Jing Gao, Yuhong Li, Tongmei Wang, Zhuo Shi, Yiqi Zhang, Shuang Liu, Pushuai Wen, Chunyan Ma
The aim of this study was to identify the key genes involved in the cardiac hypertrophy (CH) induced by pressure overload. mRNA microarray dataset GSE5500 and GSE18801 were downloaded from GEO database, and differentially expressed genes (DEGs) were screened using Limma package; then, functional and pathway enrichment analysis were performed for common DEGs using DAVID database. Furthermore, the top DEGs were further validated using qPCR in the hypertrophic heart tissue induced by Isoprenaline (ISO). A total of 113 common DEGs with absolute fold change >0...
March 6, 2018: Canadian Journal of Physiology and Pharmacology
Pingjun Zhu, Shunying Hu, Qinhua Jin, Dandan Li, Feng Tian, Sam Toan, Yang Li, Hao Zhou, Yundai Chen
Receptor-interacting protein 3 (Ripk3)-mediated necroptosis contributes to cardiac ischaemia-reperfusion (IR) injury through poorly defined mechanisms. Our results demonstrated that Ripk3 was strongly upregulated in murine hearts subjected to IR injury and cardiomyocytes treated with LPS and H2 O2 . The higher level of Ripk3 was positively correlated to the infarction area expansion, cardiac dysfunction and augmented cardiomyocytes necroptosis. Function study further illustrated that upregulated Ripk3 evoked the endoplasmic reticulum (ER) stress, which was accompanied with an increase in intracellular Ca2+ level ([Ca2+ ]c) and xanthine oxidase (XO) expression...
March 1, 2018: Redox Biology
Tolunay B Aydemir, Robert J Cousins
The SLC39A family of metal transporters was identified through homologies with the Zrt- and Irt-like (ZIP) proteins from yeast and plants. Of all the ZIP transporters, ZIP14 is arguably the most robustly characterized in terms of function at the integrative level. Mice with a global knockout of Zip14 are viable, thus providing the opportunity to conduct physiologic experiments. In mice, Zip14 expression is highly tissue specific, with the greatest abundance in the jejunum > liver > heart > kidney > white adipose tissue > skeletal muscle > spleen > pancreas...
February 1, 2018: Journal of Nutrition
Yuting Zhai, Yuanyuan Luo, Pei Wu, Dongye Li
Sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a) is a target of interest in gene therapy for heart failure with reduced ejection fraction (HFrEF). However, the results of an important clinical study, the Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID) trial, were controversial. Promising results were observed in the CUPID 1 trial, but the results of the CUPID 2 trial were negative. The factors that caused the controversial results remain unclear. Importantly, enrolled patients were required to have a higher plasma level of B-type natriuretic peptide (BNP) in the CUPID 2 trial...
February 24, 2018: Journal of Medical Genetics
Xiaoding Wang, Lin Xu, Thomas G Gillette, Xuejun Jiang, Zhao V Wang
Ischemic heart disease is a severe stress condition that causes extensive pathological alterations and triggers cardiac cell death. Accumulating evidence suggests that the unfolded protein response (UPR) is strongly induced by myocardial ischemia. The UPR is an evolutionarily conserved cellular response to cope with protein-folding stress, from yeast to mammals. Endoplasmic reticulum (ER) transmembrane sensors detect the accumulation of unfolded proteins and stimulate a signaling network to accommodate unfolded and misfolded proteins...
February 20, 2018: Journal of Molecular and Cellular Cardiology
Gaetano Santulli, Daniel Lewis, Amedee des Georges, Andrew R Marks, Joachim Frank
Ryanodine receptors (RyRs) are ubiquitous intracellular calcium (Ca2+ ) release channels required for the function of many organs including heart and skeletal muscle, synaptic transmission in the brain, pancreatic beta cell function, and vascular tone. In disease, defective function of RyRs due either to stress (hyperadrenergic and/or oxidative overload) or genetic mutations can render the channels leaky to Ca2+ and promote defective disease-causing signals as observed in heat failure, muscular dystrophy, diabetes mellitus, and neurodegerative disease...
2018: Sub-cellular Biochemistry
Soni Deshwal, Marleen Forkink, Chou-Hui Hu, Guido Buonincontri, Salvatore Antonucci, Moises Di Sante, Michael P Murphy, Nazareno Paolocci, Daria Mochly-Rosen, Thomas Krieg, Fabio Di Lisa, Nina Kaludercic
Monoamine oxidase (MAO) inhibitors ameliorate contractile function in diabetic animals, but the mechanisms remain unknown. Equally elusive is the interplay between the cardiomyocyte alterations induced by hyperglycemia and the accompanying inflammation. Here we show that exposure of primary cardiomyocytes to high glucose and pro-inflammatory stimuli leads to MAO-dependent increase in reactive oxygen species that causes permeability transition pore opening and mitochondrial dysfunction. These events occur upstream of endoplasmic reticulum (ER) stress and are abolished by the MAO inhibitor pargyline, highlighting the role of these flavoenzymes in the ER/mitochondria cross-talk...
February 19, 2018: Cell Death and Differentiation
Wen Zhang, Zhiyue Liu, Yanmei Zhang, Qinxue Bao, Wenchao Wu, He Huang, Xiaojing Liu
AIMS: Calreticulin (CRT), as a chaperone, contributes to protein folding and quality control cycle. CRT is an important factor regulating Ca2+ that participates in cell apoptosis. However, the function of CRT in the heart is still controversial. Therefore, we aimed to investigate the potential role of CRT in angiotensin II-induced cardiomyocytes apoptosis. MAIN METHODS: Primary cultured neonatal cardiomyocytes were stimulated with angiotensin II to induce the apoptosis...
February 14, 2018: Life Sciences
Guanghong Jia, Michael A Hill, James R Sowers
Heart failure and related morbidity and mortality are increasing at an alarming rate, in large part, because of increases in aging, obesity, and diabetes mellitus. The clinical outcomes associated with heart failure are considerably worse for patients with diabetes mellitus than for those without diabetes mellitus. In people with diabetes mellitus, the presence of myocardial dysfunction in the absence of overt clinical coronary artery disease, valvular disease, and other conventional cardiovascular risk factors, such as hypertension and dyslipidemia, has led to the descriptive terminology, diabetic cardiomyopathy...
February 16, 2018: Circulation Research
Lei Yao, Duanyang Xie, Li Geng, Dan Shi, Jian Huang, Yufei Wu, Fei Lv, Dandan Liang, Li Li, Yi Liu, Jun Li, Yi-Han Chen
BACKGROUND: Heart failure is a complex syndrome characterized by cardiac contractile impairment with high mortality. Defective intracellular Ca2+ homeostasis is the central cause under this scenario and tightly links to ultrastructural rearrangements of sarcolemmal transverse tubules and the sarcoplasmic reticulum (SR); however, the modulators of the SR architecture remain unknown. The SR has been thought to be a specialized endoplasmic reticulum membrane system. Receptor accessory proteins (REEPs)/DP1/Yop1p are responsible for shaping high-curvature endoplasmic reticulum tubules...
February 3, 2018: Journal of the American Heart Association
Yun Zhang, Saiyu Li, Juanjuan Li, Liwen Han, Qiuxia He, Rongchun Wang, Ximin Wang, Kechun Liu
The aims of this study were to investigate the mechanism underlying the developmental toxicity of fine particulate matter (PM2.5) and provide a more thorough understanding of the toxicity of PM2.5 in an ecological environment. Zebrafish embryos at 4 h post-fertilization were exposed to PM2.5 at doses of 200, 300, 400, 500, 600 and 800 μg/mL for 120 h. The mortality, hatching rate, morphology score, body length, locomotor capacity, histological changes, antioxidant defense system, leukocyte migration, inflammation-related gene mRNA expression, endoplasmic reticulum stress (ERS) and autophagy were evaluated to study PM2...
January 25, 2018: Chemosphere
Bianca C Bernardo, Jenny Y Y Ooi, Kate L Weeks, Natalie L Patterson, Julie R McMullen
The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation...
January 1, 2018: Physiological Reviews
Jie Zhang, Xin Zhang, Yuqi Cui, Lianqun Cui, Peng Zhao
BACKGROUND: The accumulated evidence suggests that macrophage migration inhibitory factor (MIF) plays a key role not only in acute and chronic inflammatory diseases but also in cardiovascular disease. The cardiac dysfunction is related to lipopolysaccharide (LPS) in sepsis. AIM: This study was designed to examine whether MIF mediates LPS-induced cardiac dysfunction and address the mechanisms. METHODS: Echocardiography, immunohistochemical analysis, cell shortening/relengthening and intracellular Ca2+ fluorescence evaluation were performed in whole hearts and isolated cardiomyocytes from C57 and MIF knockout mice treated with or without LPS...
January 19, 2018: Kardiologia Polska
Shengkai Zuo, Deping Kong, Chenyao Wang, Jiao Liu, Yuanyang Wang, Qiangyou Wan, Shuai Yan, Jian Zhang, Juan Tang, Qianqian Zhang, Luheng Lyu, Xin Li, Zhixin Shan, Li Qian, Yujun Shen, Ying Yu
Apoptotic death of cardiac myocytes is associated with ischemic heart disease and chemotherapy-induced cardiomyopathy. Chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) is highly expressed in the heart. However, its specific role in ischemic cardiomyopathy is not fully understood. Here, we demonstrated that CRTH2 disruption markedly improved cardiac recovery in mice postmyocardial infarction and doxorubicin challenge by suppressing cardiomyocyte apoptosis. Mechanistically, CRTH2 activation specifically facilitated endoplasmic reticulum (ER) stress-induced cardiomyocyte apoptosis via caspase-12-dependent pathway...
January 15, 2018: EMBO Molecular Medicine
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"