Read by QxMD icon Read


Jiafeng Ge, Weiwei Hu, Hui Zhou, Juan Yu, Chongran Sun, Weilin Chen
Ubiquitin C-terminal Hydrolase-L5 (UCH-L5/UCH37), a member of the deubiquitinases (DUBs), suppresses protein degeneration via removing ubiquitin from the distal subunit of the polyubiquitin chain. The activity of UCH-L5 is enhanced when UCH-L5 combines with proteasome 19S regulatory subunit by Rpn13/Admr1 receptor and inhibited when UCH-L5 interacts with NFRKB. But the role of UCH-L5 in gliomas remains unknown. In this study, analysis of 19 frozen and 51 paraffin-embedded clinic pathological cases showed that UCH-L5 expression in glioma tissues was lower than normal brain tissues...
December 26, 2017: Oncotarget
Zizhang Zhou, Xia Yao, Shu Pang, Ping Chen, Weirong Jiang, Zhaoliang Shan, Qing Zhang
The Hedgehog (Hh) signaling pathway plays important roles in developmental processes including pattern formation and tissue homeostasis. The seven-pass transmembrane receptor Smoothened (Smo) is the pivotal transducer in the pathway; it, and thus the pathway overall, is regulated by ubiquitin-mediated degradation, which occurs in the absence of Hh. In the presence of Hh, the ubiquitination levels of Smo are decreased, but the molecular basis for this outcome is not well understood. Here, we identify the deubiquitinase UCHL5 as a positive regulator of the Hh pathway...
August 23, 2017: Journal of Molecular Cell Biology
Xiuxiu Lu, Urszula Nowicka, Vinidhra Sridharan, Fen Liu, Leah Randles, David Hymel, Marzena Dyba, Sergey G Tarasov, Nadya I Tarasova, Xue Zhi Zhao, Jun Hamazaki, Shigeo Murata, Terrence R Burke, Kylie J Walters
Proteasome-ubiquitin receptor hRpn13/Adrm1 binds and activates deubiquitinating enzyme Uch37/UCHL5 and is targeted by bis-benzylidine piperidone RA190, which restricts cancer growth in mice xenografts. Here, we solve the structure of hRpn13 with a segment of hRpn2 that serves as its proteasome docking site; a proline-rich C-terminal hRpn2 extension stretches across a narrow canyon of the ubiquitin-binding hRpn13 Pru domain blocking an RA190-binding surface. Biophysical analyses in combination with cell-based assays indicate that hRpn13 binds preferentially to hRpn2 and proteasomes over RA190...
June 9, 2017: Nature Communications
Ryan T VanderLinden, Casey W Hemmis, Tingting Yao, Howard Robinson, Christopher P Hill
The 26S proteasome is a large cellular assembly that mediates the selective degradation of proteins in the nucleus and cytosol and is an established target for anticancer therapeutics. Protein substrates are typically targeted to the proteasome through modification with a polyubiquitin chain, which can be recognized by several proteasome-associated ubiquitin receptors. One of these receptors, RPN13/ADRM1, is recruited to the proteasome through direct interaction with the large scaffolding protein RPN2 within the 19S regulatory particle...
June 9, 2017: Journal of Biological Chemistry
Yun-Tzai Cloud Lee, Chia-Yun Chang, Szu-Yu Chen, Yun-Ru Pan, Meng-Ru Ho, Shang-Te Danny Hsu
Human ubiquitin C-terminal hydrolyase UCH-L5 is a topologically knotted deubiquitinase that is activated upon binding to the proteasome subunit Rpn13. The length of its intrinsically disordered cross-over loop is essential for substrate recognition. Here, we showed that the catalytic domain of UCH-L5 exhibits higher equilibrium folding stability with an unfolding rate on the scale of 10(-8) s(-1), over four orders of magnitudes slower than its paralogs, namely UCH-L1 and -L3, which have shorter cross-over loops...
March 24, 2017: Scientific Reports
Jung Hoon Lee, Min Jae Lee
Deubiquitylating (DUB) enzymes antagonize ubiquitin-dependent protein degradation both before and after the substrates are engaged with proteasomes. UCH37 is one of three proteasome-associated DUB enzymes in mammals and the only protease among them from the ubiquitin carboxyl-terminal hydrolase (UCH) family. Here, we report the identification of specific RNA aptamers for UCH37 through in vitro selection, and we describe their inhibitory effects on the DUB activity of UCH37. The RNA aptamers significantly delayed RPN13-mediated UCH37 activation and lowered total DUB activity of proteasomes, as measured by the hydrolysis of ubiquitin-rhodamine 110...
January 17, 2017: Chembiochem: a European Journal of Chemical Biology
Arjun Thapaliya, Yvonne Nyathi, Santiago Martínez-Lumbreras, Ewelina M Krysztofinska, Nicola J Evans, Isabelle L Terry, Stephen High, Rivka L Isaacson
The fate of secretory and membrane proteins that mislocalize to the cytosol is decided by a collaboration between cochaperone SGTA (small, glutamine-rich, tetratricopeptide repeat protein alpha) and the BAG6 complex, whose operation relies on multiple transient and subtly discriminated interactions with diverse binding partners. These include chaperones, membrane-targeting proteins and ubiquitination enzymes. Recently a direct interaction was discovered between SGTA and the proteasome, mediated by the intrinsic proteasomal ubiquitin receptor Rpn13...
November 9, 2016: Scientific Reports
Nicholas A Marze, Jeliazko R Jeliazkov, Shourya S Roy Burman, Scott E Boyken, Frank DiMaio, Jeffrey J Gray
The 28th-35th rounds of the Critical Assessment of PRotein Interactions (CAPRI) served as a practical benchmark for our RosettaDock protein-protein docking protocols, highlighting strengths and weaknesses of the approach. We achieved acceptable or better quality models in three out of 11 targets. For the two α-repeat protein-green fluorescent protein (αrep-GFP) complexes, we used a novel ellipsoidal partial-global docking method (Ellipsoidal Dock) to generate models with 2.2 Å/1.5 Å interface RMSD, capturing 49%/42% of the native contacts, for the 7-/5-repeat αrep complexes...
March 2017: Proteins
Xiang Chen, Leah Randles, Ke Shi, Sergey G Tarasov, Hideki Aihara, Kylie J Walters
Three receptors (Rpn1/S2/PSMD2, Rpn10/S5a, Rpn13/Adrm1) in the proteasome bind substrates by interacting with conjugated ubiquitin chains and/or shuttle factors (Rad23/HR23, Dsk2/PLIC/ubiquilin, Ddi1) that carry ubiquitinated substrates to proteasomes. We solved the structure of two such receptors with their preferred shuttle factor, namely hRpn13(Pru):hPLIC2(UBL) and scRpn1 T1:scRad23(UBL). We find that ubiquitin folds in Rad23 and Dsk2 are fine-tuned by residue substitutions to achieve high affinity for Rpn1 and Rpn13, respectively...
August 2, 2016: Structure
Y Song, A Ray, S Li, D S Das, Y T Tai, R D Carrasco, D Chauhan, K C Anderson
Proteasome inhibitor bortezomib is an effective therapy for relapsed and newly diagnosed multiple myeloma (MM); however, dose-limiting toxicities and the development of resistance can limit its long-term utility. Recent research has focused on targeting ubiquitin receptors upstream of 20S proteasome, with the aim of generating less toxic therapies. Here we show that 19S proteasome-associated ubiquitin receptor Rpn13 is more highly expressed in MM cells than in normal plasma cells. Rpn13-siRNA (small interfering RNA) decreases MM cell viability...
September 2016: Leukemia: Official Journal of the Leukemia Society of America, Leukemia Research Fund, U.K
Richard Golnik, Andrea Lehmann, Peter-Michael Kloetzel, Frédéric Ebstein
The supply of MHC class I-restricted peptides is primarily ensured by the degradation of intracellular proteins via the ubiquitin-proteasome system. Depending on the target and the enzymes involved, ubiquitination is a process that may dramatically vary in terms of linkages, length, and attachment sites. Here we identified the unique lysine residue at position 124 of the NY-ESO-1 cancer/testis antigen as the acceptor site for the formation of canonical Lys-48-linkages. Interestingly, a lysine-less form of NY-ESO-1 was as efficient as its wild-type counterpart in supplying the HLA-A*0201-restricted NY-ESO-1157-165 antigenic peptide...
April 15, 2016: Journal of Biological Chemistry
Xiuxiu Lu, Fen Liu, Sarah E Durham, Sergey G Tarasov, Kylie J Walters
Rpn13 is a proteasome ubiquitin receptor that has emerged as a therapeutic target for human cancers. Its ubiquitin-binding activity is confined to an N-terminal Pru (pleckstrin-like receptor for ubiquitin) domain that also docks it into the proteasome, while its C-terminal DEUBAD (DEUBiquitinase ADaptor) domain recruits deubiquitinating enzyme Uch37 to the proteasome. Bis-benzylidine piperidone derivatives that were found to bind covalently to Rpn13 C88 caused the accumulation of polyubiquitinated proteins as well as ER stress-related apoptosis in various cancer cell lines, including bortezomib-resistant multiple myeloma lines...
2015: PloS One
Alice Zuin, Anne Bichmann, Marta Isasa, Pilar Puig-Sàrries, Luís Miguel Díaz, Bernat Crosas
Despite the progress made in understanding the roles of proteasome polyubiquitin receptors, such as the subunits Rpn10 (regulatory particle non-ATPase 10) and Rpn13, and the transient interactors Rad23 (radiation sensitivity abnormal 23) and Dsk2 (dual-specificity protein kinase 2), the mechanisms involved in their regulation are virtually unknown. Rpn10, which is found in the cell in proteasome-bound and -unbound pools, interacts with Dsk2, and this interaction has been proposed to regulate the amount of Dsk2 that gains access to the proteasome...
December 15, 2015: Biochemical Journal
Jun Hamazaki, Shoshiro Hirayama, Shigeo Murata
Intracellular proteins tagged with ubiquitin chains are targeted to the 26S proteasome for degradation. The two subunits, Rpn10 and Rpn13, function as ubiquitin receptors of the proteasome. However, differences in roles between Rpn10 and Rpn13 in mammals remains to be understood. We analyzed mice deficient for Rpn13 and Rpn10. Liver-specific deletion of either Rpn10 or Rpn13 showed only modest impairment, but simultaneous loss of both caused severe liver injury accompanied by massive accumulation of ubiquitin conjugates, which was recovered by re-expression of either Rpn10 or Rpn13...
July 2015: PLoS Genetics
Madeline R Scott, Maria D Rubio, Vahram Haroutunian, James H Meador-Woodruff
The ubiquitin proteasome system (UPS) is a major regulator of protein processing, trafficking, and degradation. While protein ubiquitination is utilized for many cellular processes, one major function of this system is to target proteins to the proteasome for degradation. In schizophrenia, studies have found UPS transcript abnormalities in both blood and brain, and we have previously reported decreased protein expression of ubiquitin-associated proteins in brain. To test whether the proteasome is similarly dysregulated, we measured the protein expression of proteasome catalytic subunits as well as essential subunits from proteasome regulatory complexes in 14 pair-matched schizophrenia and comparison subjects in superior temporal cortex...
February 2016: Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology
Pawel Leznicki, Jelena Korac-Prlic, Katarzyna Kliza, Koraljka Husnjak, Yvonne Nyathi, Ivan Dikic, Stephen High
Rpn13 is an intrinsic ubiquitin receptor of the 26S proteasome regulatory subunit that facilitates substrate capture prior to degradation. Here we show that the C-terminal region of Rpn13 binds to the tetratricopeptide repeat (TPR) domain of SGTA, a cytosolic factor implicated in the quality control of mislocalised membrane proteins (MLPs). The overexpression of SGTA results in a substantial increase in steady-state MLP levels, consistent with an effect on proteasomal degradation. However, this effect is strongly dependent upon the interaction of SGTA with the proteasomal component Rpn13...
September 1, 2015: Journal of Cell Science
Darci J Trader, Scott Simanski, Thomas Kodadek
The proteasome is a multisubunit complex responsible for most nonlysosomal turnover of proteins in eukaryotic cells. Proteasome inhibitors are of great interest clinically, particularly for the treatment of multiple myeloma (MM). Unfortunately, resistance arises almost inevitably to these active site-targeted drugs. One strategy to overcome this resistance is to inhibit other steps in the protein turnover cascade mediated by the proteasome. Previously, Anchoori et al. identified Rpn13 as the target of an electrophilic compound (RA-190) that was selectively toxic to MM cells (Cancer Cell 2013, 24, 791-805), suggesting that this subunit of the proteasome is also a viable cancer drug target...
May 20, 2015: Journal of the American Chemical Society
Xiang Chen, Kylie J Walters
Two studies in this issue of Molecular Cell,VanderLinden et al. (2015) and Sahtoe et al. (2015),report crystal structures that define how deubiquitinating enzyme UCH37 is switched on or off by proteasome ubiquitin receptor RPN13 or chromatin remodeler component INO80G.
March 5, 2015: Molecular Cell
Ryan T Vander Linden, Casey W Hemmis, Benjamin Schmitt, Ada Ndoja, Frank G Whitby, Howard Robinson, Robert E Cohen, Tingting Yao, Christopher P Hill
The UCH37 deubiquitylase functions in two large and very different complexes, the 26S proteasome and the INO80 chromatin remodeler. We have performed biochemical characterization and determined crystal structures of UCH37 in complexes with RPN13 and NFRKB, which mediate its recruitment to the proteasome and INO80, respectively. RPN13 and NFRKB make similar contacts to the UCH37 C-terminal domain but quite different contacts to the catalytic UCH domain. RPN13 can activate UCH37 by disrupting dimerization, although physiologically relevant activation likely results from stabilization of a surface competent for ubiquitin binding and modulation of the active-site crossover loop...
March 5, 2015: Molecular Cell
Danny D Sahtoe, Willem J van Dijk, Farid El Oualid, Reggy Ekkebus, Huib Ovaa, Titia K Sixma
Deubiquitinating enzymes (DUBs) control vital processes in eukaryotes by hydrolyzing ubiquitin adducts. Their activities are tightly regulated, but the mechanisms remain elusive. In particular, the DUB UCH-L5 can be either activated or inhibited by conserved regulatory proteins RPN13 and INO80G, respectively. Here we show how the DEUBAD domain in RPN13 activates UCH-L5 by positioning its C-terminal ULD domain and crossover loop to promote substrate binding and catalysis. The related DEUBAD domain in INO80G inhibits UCH-L5 by exploiting similar structural elements in UCH-L5 to promote a radically different conformation, and employs molecular mimicry to block ubiquitin docking...
March 5, 2015: Molecular Cell
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"