keyword
MENU ▼
Read by QxMD icon Read
search

Huntingtin associated Protein

keyword
https://www.readbyqxmd.com/read/28339398/n-terminal-fragments-of-huntingtin-longer-than-residue-170-form-visible-aggregates-independently-to-polyglutamine-expansion
#1
Moore Z Chen, Sue-Ann Mok, Angelique R Ormsby, Paul J Muchowski, Danny M Hatters
BACKGROUND: A hallmark of Huntington's disease is the progressive aggregation of full length and N-terminal fragments of polyglutamine (polyQ)-expanded Huntingtin (Htt) into intracellular inclusions. The production of N-terminal fragments appears important for enabling pathology and aggregation; and hence the direct expression of a variety of N-terminal fragments are commonly used to model HD in animal and cellular models. OBJECTIVE: It remains unclear how the length of the N-terminal fragments relates to polyQ - mediated aggregation...
March 22, 2017: Journal of Huntington's Disease
https://www.readbyqxmd.com/read/28334749/ctg-repeat-targeting-oligonucleotides-for-down-regulating-huntingtin-expression
#2
Eman M Zaghloul, Olof Gissberg, Pedro M D Moreno, Lee Siggens, Mattias Hällbrink, Anna S Jørgensen, Karl Ekwall, Rula Zain, Jesper Wengel, Karin E Lundin, C I Edvard Smith
Huntington's disease (HD) is a fatal, neurodegenerative disorder in which patients suffer from mobility, psychological and cognitive impairments. Existing therapeutics are only symptomatic and do not significantly alter the disease progression or increase life expectancy. HD is caused by expansion of the CAG trinucleotide repeat region in exon 1 of the Huntingtin gene (HTT), leading to the formation of mutant HTT transcripts (muHTT). The toxic gain-of-function of muHTT protein is a major cause of the disease...
February 17, 2017: Nucleic Acids Research
https://www.readbyqxmd.com/read/28306505/identification-of-an-rna-polymerase-iii-regulator-linked-to-disease-associated-protein-aggregation
#3
Olga Sin, Tristan de Jong, Alejandro Mata-Cabana, Michelle Kudron, Mohamad Amr Zaini, Francesco A Aprile, Renée I Seinstra, Esther Stroo, Roméo Willinge Prins, Céline N Martineau, Hai Hui Wang, Wytse Hogewerf, Anne Steinhof, Erich E Wanker, Michele Vendruscolo, Cornelis F Calkhoven, Valerie Reinke, Victor Guryev, Ellen A A Nollen
Protein aggregation is associated with age-related neurodegenerative disorders, such as Alzheimer's and polyglutamine diseases. As a causal relationship between protein aggregation and neurodegeneration remains elusive, understanding the cellular mechanisms regulating protein aggregation will help develop future treatments. To identify such mechanisms, we conducted a forward genetic screen in a C. elegans model of polyglutamine aggregation and identified the protein MOAG-2/LIR-3 as a driver of protein aggregation...
March 16, 2017: Molecular Cell
https://www.readbyqxmd.com/read/28288000/age-associated-chromatin-relaxation-is-enhanced-in-huntington-s-disease-mice
#4
Myungsun Park, Byungkuk Min, Kyuheum Jeon, Sunwha Cho, Jung Sun Park, Jisun Kim, Jeha Jeon, Jinhoi Song, Seokho Kim, Sangkyun Jeong, Hyemyung Seo, Yong-Kook Kang
Expansion of polyglutamine stretch in the huntingtin (HTT) protein is a major cause of Huntington's disease (HD). The polyglutamine part in HTT interacts with various proteins implicated in epigenetic regulation of genes, suggesting that mutant HTT may disturb the integrity of the epigenetic system. Here, we used a PCRseq-based method to examine expression profile of 395 exonic segments from 260 "epi-driver" genes in splenic T lymphocytes from aged HD mice. We identified 67 exonic segments differentially expressed between young and aged HD mice, most of them upregulated in the aged...
March 12, 2017: Aging
https://www.readbyqxmd.com/read/28282438/a-new-caenorhabditis-elegans-model-of-human-huntingtin-513-aggregation-and-toxicity-in-body-wall-muscles
#5
Amy L Lee, Hailey M Ung, L Paul Sands, Elise A Kikis
Expanded polyglutamine repeats in different proteins are the known determinants of at least nine progressive neurodegenerative disorders whose symptoms include cognitive and motor impairment that worsen as patients age. One such disorder is Huntington's Disease (HD) that is caused by a polyglutamine expansion in the human huntingtin protein (htt). The polyglutamine expansion destabilizes htt leading to protein misfolding, which in turn triggers neurodegeneration and the disruption of energy metabolism in muscle cells...
2017: PloS One
https://www.readbyqxmd.com/read/28259758/huntingtin-associated-protein-1-hap1-regulates-endocytosis-and-interacts-with-multiple-trafficking-related-proteins
#6
Kimberly D Mackenzie, Yoon Lim, Michael D Duffield, Timothy Chataway, Xin-Fu Zhou, Damien J Keating
Huntingtin-associated protein 1 (HAP1) was initially identified as a binding partner of huntingtin, mutations in which underlie Huntington's disease. Subcellular localization and protein interaction data indicate that HAP1 may be important in vesicle trafficking, cell signalling and receptor internalization. In this study, a proteomics approach was used for the identification of novel HAP1-interacting partners to attempt to shed light on the physiological function of HAP1. Using affinity chromatography with HAP1-GST protein fragments bound to Sepharose columns, this study identified a number of trafficking-related proteins that bind to HAP1...
March 1, 2017: Cellular Signalling
https://www.readbyqxmd.com/read/28235896/pathogenic-huntington-alters-bmp-signaling-and-synaptic-growth-through-local-disruptions-of-endosomal-compartments
#7
Yulia Akbergenova, J Troy Littleton
Huntington's disease (HD) is a neurodegenerative disorder caused by expansion of a polyglutamine (polyQ) stretch within the Huntingtin (Htt) protein. Pathogenic Htt disrupts multiple neuronal processes, including gene expression, axonal trafficking, proteasome and mitochondrial activity, and intracellular vesicle trafficking. However, the primary pathogenic mechanism and subcellular site of action for mutant Htt are still unclear. Using a Drosophila HD model, we found that pathogenic Htt expression leads to a profound overgrowth of synaptic connections that directly correlates with the levels of Htt at nerve terminals...
February 24, 2017: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
https://www.readbyqxmd.com/read/28211815/generation-and-characterization-of-knock-in-mouse-models-expressing-versions-of-huntingtin-with-either-an-n17-or-a-combined-polyq-and-proline-rich-region-deletion
#8
Emily A André, Elise M Braatz, Jeh-Ping Liu, Scott O Zeitlin
BACKGROUND: The polyglutamine (polyQ) stretch of the Huntingtin protein (HTT) in mammals is flanked by a highly conserved 17 amino acid N-terminal domain (N17), and a proline-rich region (PRR). The PRR is a binding site for many HTT-interacting proteins, and the N17 domain regulates several normal HTT functions, including HTT's ability to associate with membranes and organelles. OBJECTIVE: This study investigates the consequence of deleting mouse Huntingtin's (Htt's) N17 domain or a combination of its polyQ stretch and PRR (QP) on normal Htt function in mice...
February 16, 2017: Journal of Huntington's Disease
https://www.readbyqxmd.com/read/28153533/dysregulation-of-gene-expression-in-the-striatum-of-bachd-rats-expressing-full-length-mutant-huntingtin-and-associated-abnormalities-on-molecular-and-protein-levels
#9
Libo Yu-Taeger, Michael Bonin, Janice Stricker-Shaver, Olaf Riess, Hoa Huu Phuc Nguyen
Huntington disease (HD) is an autosomal dominantly inherited neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for the huntingtin protein (HTT). Mutant HTT (mHTT) has been proposed to cause neuronal dysfunction and neuronal loss through multiple mechanisms. Transcriptional changes may be a core pathogenic feature of HD. Utilizing the Affymetrix platform we performed a genome-wide RNA expression analysis in two BACHD transgenic rat lines (TG5 and TG9) at 12 months of age, both of which carry full-length human mHTT but with different expression levels...
January 30, 2017: Neuropharmacology
https://www.readbyqxmd.com/read/28137862/dyrk1a-regulates-hap1-dcaf7-wdr68-binding-with-implication-for-delayed-growth-in-down-syndrome
#10
Jianxing Xiang, Su Yang, Ning Xin, Marta A Gaertig, Roger H Reeves, Shihua Li, Xiao-Jiang Li
Huntingtin-associated protein 1 (Hap1) is known to be critical for postnatal hypothalamic function and growth. Hap1 forms stigmoid bodies (SBs), unique neuronal cytoplasmic inclusions of unknown function that are enriched in hypothalamic neurons. Here we developed a simple strategy to isolate the SB-enriched fraction from mouse brain. By analyzing Hap1 immunoprecipitants from this fraction, we identified a Hap1-interacting SB component, DDB1 and CUL4 associated factor 7 (Dcaf7)/WD40 repeat 68 (WDR68), whose protein level and nuclear translocation are regulated by Hap1...
February 14, 2017: Proceedings of the National Academy of Sciences of the United States of America
https://www.readbyqxmd.com/read/28132929/identification-of-brain-substrates-of-transglutaminase-by-functional-proteomics-supports-its-role-in-neurodegenerative-diseases
#11
William André, Isabelle Nondier, Maud Valensi, François Guillonneau, Christian Federici, Guylaine Hoffner, Philippe Djian
Transglutaminases are calcium-dependent enzymes that catalyze the formation of ε-(γ-glutamyl)lysine isopeptide bonds between specific glutamine and lysine residues. Some transglutaminase isoforms are present in the brain and are thought to participate in the protein aggregation characteristic of neurological diseases such as Huntington, Alzheimer's and Parkinson's disease. We have developed a functional proteomics strategy in which biotinylated amine-donor and amine-acceptor probes were used to identify the transglutaminase substrates present in brain...
May 2017: Neurobiology of Disease
https://www.readbyqxmd.com/read/28104789/a-novel-humanized-mouse-model-of-huntington-disease-for-preclinical-development-of-therapeutics-targeting-mutant-huntingtin-alleles
#12
Amber L Southwell, Niels H Skotte, Erika B Villanueva, Michael E Østergaard, Xiaofeng Gu, Holly B Kordasiewicz, Chris Kay, Daphne Cheung, Yuanyun Xie, Sabine Waltl, Louisa Dal Cengio, Hailey Findlay-Black, Crystal N Doty, Eugenia Petoukhov, Diepiriye Iworima, Ramy Slama, Jolene Ooi, Mahmoud A Pouladi, William X Yang, Eric E Swayze, Punit P Seth, Michael R Hayden
Huntington disease (HD) is a neurodegenerative disease caused by a mutation in the huntingtin (HTT) gene. HTT is a large protein, interacts with many partners and is involved in many cellular pathways, which are perturbed in HD. Therapies targeting HTT directly are likely to provide the most global benefit. Thus there is a need for preclinical models of HD recapitulating human HTT genetics. We previously generated a humanized mouse model of HD, Hu97/18, by intercrossing BACHD and YAC18 mice with knockout of the endogenous mouse HD homolog (Hdh)...
January 18, 2017: Human Molecular Genetics
https://www.readbyqxmd.com/read/28102321/the-chaperonin-cct-inhibits-assembly-of-%C3%AE-synuclein-amyloid-fibrils-by-a-specific-conformation-dependent-interaction
#13
Begoña Sot, Alejandra Rubio-Muñoz, Ahudrey Leal-Quintero, Javier Martínez-Sabando, Miguel Marcilla, Cintia Roodveldt, José M Valpuesta
The eukaryotic chaperonin CCT (chaperonin containing TCP-1) uses cavities built into its double-ring structure to encapsulate and to assist folding of a large subset of proteins. CCT can inhibit amyloid fibre assembly and toxicity of the polyQ extended mutant of huntingtin, the protein responsible for Huntington's disease. This raises the possibility that CCT modulates other amyloidopathies, a still-unaddressed question. We show here that CCT inhibits amyloid fibre assembly of α-synuclein A53T, one of the mutants responsible for Parkinson's disease...
January 19, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28096245/prion-like-characteristics-of-polyglutamine-containing-proteins
#14
Margaret M P Pearce, Ron R Kopito
Transmissible spongiform encephalopathies are infectious neurodegenerative diseases caused by the conversion of prion protein (PrP) into a self-replicating conformation that spreads via templated conversion of natively folded PrP molecules within or between cells. Recent studies provide compelling evidence that prion-like behavior is a general property of most protein aggregates associated with neurodegenerative diseases. Many of these disorders are associated with spontaneous protein aggregation, but genetic mutations can increase the aggregation propensity of specific proteins, including expansion of polyglutamine (polyQ) tracts, which is causative of nine inherited neurodegenerative diseases...
January 17, 2017: Cold Spring Harbor Perspectives in Medicine
https://www.readbyqxmd.com/read/28094373/conformational-dynamics-and-self-association-of-intrinsically-disordered-huntingtin-exon-1-in-cells
#15
Steffen Büning, Abhishek Sharma, Shivang Vachharajani, Estella Newcombe, Angelique Ormsby, Mimi Gao, David Gnutt, Tobias Vöpel, Danny M Hatters, Simon Ebbinghaus
Huntington's disease is caused by a CAG trinucleotide expansion mutation in the Huntingtin gene that leads to an artificially long polyglutamine sequence in the Huntingtin protein. A key feature of the disease is the intracellular aggregation of the Huntingtin exon 1 protein (Httex1) into micrometer sized inclusion bodies. The aggregation process of Httex1 has been extensively studied in vitro, however, the crucial early events of nucleation and aggregation in the cell remain elusive. Here, we studied the conformational dynamics and self-association of Httex1 by in-cell experiments using laser-induced temperature jumps and analytical ultracentrifugation...
January 17, 2017: Physical Chemistry Chemical Physics: PCCP
https://www.readbyqxmd.com/read/27992085/muscle-atrophy-is-associated-with-cervical-spinal-motoneuron-loss-in-bachd-mouse-model-for-huntington-s-disease
#16
Priscila Aparecida Costa Valadão, Bárbara Campos de Aragão, Jéssica Neves Andrade, Matheus Proença S Magalhães-Gomes, Giselle Foureaux, Julliane Vasconcelos Joviano-Santos, José Carlos Nogueira, Fabíola Mara Ribeiro, Juan Carlos Tapia, Cristina Guatimosim
Involuntary choreiform movements are clinical hallmark of Huntington's disease, an autosomal dominant neurodegenerative disorder caused by an increased number of CAG trinucleotide repeats in the huntingtin gene. Involuntary movements start with an impairment of facial muscles and then affect trunk and limbs muscles. Huntington's disease symptoms are caused by changes in cortex and striatum neurons induced by mutated huntingtin protein. However, little is known about the impact of this abnormal protein in spinal cord motoneurons that control movement...
December 19, 2016: European Journal of Neuroscience
https://www.readbyqxmd.com/read/27984179/immunohistochemical-analysis-of-huntingtin-associated-protein-1-in-adult-rat-spinal-cord-and-its-regional-relationship-with-androgen-receptor
#17
Md Nabiul Islam, Yukio Takeshita, Akie Yanai, Amami Imagawa, Mir Rubayet Jahan, Greggory Wroblewski, Joe Nemoto, Ryutaro Fujinaga, Koh Shinoda
Huntingtin-associated protein 1 (HAP1) is a neuronal interactor with causatively polyglutamine (polyQ)-expanded huntingtin in Huntington's disease and also associated with pathologically polyQ-expanded androgen receptor (AR) in spinobulbar muscular atrophy (SBMA), being considered as a protective factor against neurodegenerative apoptosis. In normal brains, it is abundantly expressed particularly in the limbic-hypothalamic regions that tend to be spared from neurodegeneration, whereas the areas with little HAP1 expression, including the striatum, thalamus, cerebral neocortex and cerebellum, are targets in several neurodegenerative diseases...
January 6, 2017: Neuroscience
https://www.readbyqxmd.com/read/27973707/moonlighting-chaperone-like-activity-of-the-universal-regulatory-14-3-3-proteins
#18
REVIEW
Nikolai N Sluchanko, Nikolai B Gusev
The ubiquitous eukaryotic 14-3-3 proteins coordinate multiple cellular processes due to their well-known regulatory function that is based on specific recognition of phosphorylated motifs in their partners. In this context, 14-3-3 proteins have, in reports, been called 'chaperones'. Although in the classical meaning this is not fully correct, recent studies have revealed that 14-3-3 can indeed be an integral part of the protein quality control system, as they: (i) display ATP-independent anti-aggregation ('holdase') activity, similar to that of the unrelated small heat shock proteins; (ii) assist in clearing misfolded proteins by directing them to proteasomes or aggresomes; (iii) cooperate with classical chaperones for substrate refolding; and also (iv) are associated with neurodegenerative disorders by affecting aggregation of tau, prion protein, α-synuclein, and huntingtin, etc...
December 14, 2016: FEBS Journal
https://www.readbyqxmd.com/read/27957684/huntingtin-polyq-mutation-impairs-the-17%C3%AE-estradiol-neuroglobin-pathway-devoted-to-neuron-survival
#19
Maria Teresa Nuzzo, Marco Fiocchetti, Pierangela Totta, Mariarosa A B Melone, Antonella Cardinale, Francesca R Fusco, Stefano Gustincich, Francesca Persichetti, Paolo Ascenzi, Maria Marino
Among several mechanisms underlying the well-known trophic and protective effects of 17β-estradiol (E2) in the brain, we recently reported that E2 induces the up-regulation of two anti-apoptotic and neuroprotectant proteins: huntingtin (HTT) and neuroglobin (NGB). Here, we investigate the role of this up-regulation. The obtained results indicate that E2 promotes NGB-HTT association, induces the localization of the complex at the mitochondria, and protects SK-N-BE neuroblastoma cells and murine striatal cells, which express wild-type HTT (i...
December 12, 2016: Molecular Neurobiology
https://www.readbyqxmd.com/read/27938392/ulk1-mediated-phosphorylation-of-atg14-promotes-autophagy-and-is-impaired-in-huntington-s-disease-models
#20
Mitchell S Wold, Junghyun Lim, Véronik Lachance, Zhiqiang Deng, Zhenyu Yue
BACKGROUND: Autophagy is a bulk degradation pathway for long-lived proteins, protein aggregates, and damaged organelles. ULK1 protein kinase and Vps34 lipid kinase are two key autophagy regulators that are critical for autophagosome biogenesis. However, it isn't fully understood how ULK1 regulates Vps34, especially in the context of disease. Polyglutamine expansion in huntingtin (Htt) causes aberrant accumulation of the aggregated protein and disrupts various cellular pathways including autophagy, a lysosomal degradation pathway, underlying the pathogenesis of Huntington's disease (HD)...
December 9, 2016: Molecular Neurodegeneration
keyword
keyword
75278
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"