Read by QxMD icon Read

Axonal guidance

Rocco Gogliotti, Nicole Fisher, Branden Stansley, Carrie Jones, Craig Lindsley, Jeffrey Conn, Colleen Niswender
Mutations in the Methyl CpG Binding Protein 2 (MECP2) gene are responsible for the neurodevelopmental disorder Rett syndrome (RTT). MeCP2 is a DNA-binding protein whose abundance and ability to complex with HDAC3 is linked to the regulation of chromatin structure. Consequently, loss-of-function mutations in MeCP2 are predicted to have broad effects on gene expression. However, to date, studies in mouse models of RTT have identified a limited number of gene or pathway-level disruptions, and even fewer genes have been identified that could be considered amenable to classical drug discovery approaches...
March 9, 2018: Journal of Pharmacology and Experimental Therapeutics
Yuejie Zhao, Jeong Yeh Yang, David F Thieker, Yongmei Xu, Chengli Zong, Geert-Jan Boons, Jian Liu, Robert J Woods, Kelley W Moremen, I Jonathan Amster
Roundabout 1 (Robo1) interacts with its receptor Slit to regulate axon guidance, axon branching, and dendritic development in the nervous system and to regulate morphogenesis and many cell functions in the nonneuronal tissues. This interaction is known to be critically regulated by heparan sulfate (HS). Previous studies suggest that HS is required to promote the binding of Robo1 to Slit to form the minimal signaling complex, but the molecular details and the structural requirements of HS for this interaction are still unclear...
March 8, 2018: Journal of the American Society for Mass Spectrometry
Stuart J Grice, James N Sleigh, M Zameel Cader
Dominant mutations in GARS , encoding the ubiquitous enzyme glycyl-tRNA synthetase (GlyRS), cause peripheral nerve degeneration and Charcot-Marie-Tooth disease type 2D (CMT2D). This genetic disorder exemplifies a recurring paradigm in neurodegeneration, in which mutations in essential genes cause selective degeneration of the nervous system. Recent evidence suggests that the mechanism underlying CMT2D involves extracellular neomorphic binding of mutant GlyRS to neuronally-expressed proteins. Consistent with this, our previous studies indicate a non-cell autonomous mechanism, whereby mutant GlyRS is secreted and interacts with the neuromuscular junction (NMJ)...
2018: Frontiers in Molecular Neuroscience
Sofia Golenkina, Vishal Chaturvedi, Robert Saint, Michael J Murray
Netrin receptors of the DCC/NEO/UNC-40/Frazzled family have well established roles in cell migration and axon guidance but can also regulate epithelial features such as adhesion, polarity and adherens junction (AJ) stability. Previously, we have shown that overexpression of Drosophila Frazzled (Fra) in the peripodial epithelium (PE) inhibits wing disc eversion and also generates cellular protrusions typical of motile cells. Here, we tested whether the molecular pathways by which Fra inhibits eversion are distinct from those driving motility...
2018: PloS One
Christiana Martin, Young-Eun Cho, Hyungsuk Kim, Sijung Yun, Rebekah Kanefsky, Hyunhwa Lee, Vincent Mysliwiec, Ann Cashion, Jessica Gill
Military personnel experience posttraumatic stress disorder (PTSD), which is associated with differential DNA methylation across the whole genome. However, the relationship between these DNA methylation patterns and clinically relevant increases in PTSD severity is not yet clearly understood. The purpose of this study was to identify differences in DNA methylation associated with PTSD symptoms and investigate DNA methylation changes related to increases in the severity of PTSD in military personnel. In this pilot study, a cross-sectional comparison was made between military personnel with PTSD (n = 8) and combat-matched controls without PTSD (n = 6)...
January 1, 2018: Biological Research for Nursing
Mickael Orgeur, Marvin Martens, Georgeta Leonte, Sonya Nassari, Marie-Ange Bonnin, Stefan T Börno, Bernd Timmermann, Jochen Hecht, Delphine Duprez, Sigmar Stricker
Connective tissues support organs and play crucial roles in development, homeostasis and fibrosis, yet our understanding of their formation is still limited. To gain insight into the molecular mechanisms of connective tissue specification, we selected five zinc finger transcription factors - OSR1, OSR2, EGR1, KLF2 and KLF4 - based on their expression patterns and/or known involvement in connective tissue subtype differentiation. RNA-seq and ChIP-seq profiling revealed a set of common genes regulated by all five transcription factors, which we propose as connective tissue core expression set...
March 6, 2018: Development
Michael Briese, Lena Saal-Bauernschubert, Changhe Ji, Mehri Moradi, Hanaa Ghanawi, Michael Uhl, Silke Appenzeller, Rolf Backofen, Michael Sendtner
Disturbed RNA processing and subcellular transport contribute to the pathomechanisms of motoneuron diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. RNA-binding proteins are involved in these processes, but the mechanisms by which they regulate the subcellular diversity of transcriptomes, particularly in axons, are not understood. Heterogeneous nuclear ribonucleoprotein R (hnRNP R) interacts with several proteins involved in motoneuron diseases. It is located in axons of developing motoneurons, and its depletion causes defects in axon growth...
March 5, 2018: Proceedings of the National Academy of Sciences of the United States of America
Jameel Iqbal, Tony Yuen, Se-Min Kim, Mone Zaidi
Bone formation and resorption are tightly coupled, and dysfunction of either process leads to bone diseases, such as osteoporosis. Bone-forming agents have been explored clinically to increase bone density; however, long-term efficacy of these strategies is limited due to the accompanying increase in resorption in response to increased bone formation. Axonal guidance molecules have recently been shown to regulate formation-resorption coupling and thus have the potential for osteoporosis therapy. In this issue of the JCI, Kim et al...
March 5, 2018: Journal of Clinical Investigation
Beom-Jun Kim, Young-Sun Lee, Sun-Young Lee, Wook-Young Baek, Young Jin Choi, Sung Ah Moon, Seung Hun Lee, Jung-Eun Kim, Eun-Ju Chang, Eun-Young Kim, Jin Yoon, Seung-Whan Kim, Sung Ho Ryu, Sun-Kyeong Lee, Joseph A Lorenzo, Seong Hee Ahn, Hyeonmok Kim, Ki-Up Lee, Ghi Su Kim, Jung-Min Koh
Coupling is the process that links bone resorption to bone formation in a temporally and spatially coordinated manner within the remodeling cycle. Several lines of evidence point to the critical roles of osteoclast-derived coupling factors in the regulation of osteoblast performance. Here, we used a fractionated secretomic approach and identified the axon-guidance molecule SLIT3 as a clastokine that stimulated osteoblast migration and proliferation by activating β-catenin. SLIT3 also inhibited bone resorption by suppressing osteoclast differentiation in an autocrine manner...
March 5, 2018: Journal of Clinical Investigation
Ying Liu, Tuhin Bhowmick, Yiqiong Liu, Xuefan Gao, Haydyn D T Mertens, Dmitri I Svergun, Junyu Xiao, Yan Zhang, Jia-Huai Wang, Rob Meijers
Axon guidance involves the spatiotemporal interplay between guidance cues and membrane-bound cell-surface receptors, present on the growth cone of the axon. Netrin-1 is a prototypical guidance cue that binds to deleted in colorectal cancer (DCC), and it has been proposed that the guidance cue Draxin modulates this interaction. Here, we present structural snapshots of Draxin/DCC and Draxin/Netrin-1 complexes, revealing a triangular relationship that affects Netrin-mediated haptotaxis and fasciculation. Draxin interacts with DCC through the N-terminal four immunoglobulin domains, and Netrin-1 through the EGF-3 domain, in the same region where DCC binds...
February 20, 2018: Neuron
Anna V Leopold, Konstantin G Chernov, Vladislav V Verkhusha
Protein kinases are involved in the regulation of many cellular processes including cell differentiation, survival, migration, axon guidance and neuronal plasticity. A growing set of optogenetic tools, termed opto-kinases, allows activation and inhibition of different protein kinases with light. The optogenetic regulation enables fast, reversible and non-invasive manipulation of protein kinase activities, complementing traditional methods, such as treatment with growth factors, protein kinase inhibitors or chemical dimerizers...
March 2, 2018: Chemical Society Reviews
Mouwei Zheng, Ronghua Chen, Hongbin Chen, Yixian Zhang, Jianhao Chen, Peiqiang Lin, Quan Lan, Qilin Yuan, Yongxing Lai, Xinhong Jiang, Xiaodong Pan, Nan Liu
As a secreted axon guidance molecule, Netrin-1 has been documented to be a neuroprotective factor, which can reduce infarct volume, promote angiogenesis and anti-apoptosis after stroke in rodents. However, its role in axonal regeneration and synaptic formation after cerebral ischemic injury, and the related underlying mechanisms remain blurred. In this study, we used Adeno-associated vectors carrying Netrin-1 gene (AAV-NT-1) to up-regulate the expression level of Netrin-1 in rats' brain after middle cerebral artery occlusion (MCAO)...
2018: Frontiers in Cellular Neuroscience
Ying Si, Xianqin Cui, David K Crossman, Jiaying Hao, Mohamed Kazamel, Yuri Kwon, Peter H King
ALS is a fatal neurodegenerative disorder of motor neurons leading to progressive atrophy and weakness of muscles. Some of the earliest pathophysiological changes occur at the level of skeletal muscle and the neuromuscular junction. We previously identified distinct mRNA patterns, including members of the Smad and TGF-β family, that emerge in muscle tissue at the earliest (pre-clinical) stages. These patterns track disease progression in the mutant SOD1 mouse and are present in human ALS muscle. Because miRNAs play a direct regulatory role in mRNA expression, we hypothesized in this study that there would be distinct miRNA patterns in ALS muscle appearing in early stages that could track disease progression...
February 24, 2018: Neurobiology of Disease
Chun-Hao Su, Dhananjaya D, Woan-Yuh Tarn
Alternative splicing of precursor mRNA is an important mechanism that increases transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA levels. Alternative splicing occurs at high frequency in brain tissues and contributes to every step of nervous system development, including cell-fate decisions, neuronal migration, axon guidance, and synaptogenesis. Genetic manipulation and RNA sequencing have provided insights into the molecular mechanisms underlying the effects of alternative splicing in stem cell self-renewal and neuronal fate specification...
2018: Frontiers in Molecular Biosciences
Yongqiang Cai, Jinping Lu, Faqing Tang
Molecule interacting with CasL 2 (MICAL2), a microtubule associated monooxygenase, is involved in cell growth, axon guidance, vesicle trafficking and apoptosis. Recent studies have demonstrated that MICAL2 is highly expressed in tumor and accelerates tumor progression and it is deemed to be a novel tumor-promoting factor. MICAL2 overexpression increases cell proliferation to accelerate tumor growth, and MICAL2 also promotes epithelial-mesenchymal transition (EMT)-related proteins to increase cancer cell metastasis...
2018: Journal of Cancer
Biqing Chen, Zijian Zhu, Yingying Wang, Xiaohu Ding, Xiaobo Guo, Mingguang He, Wan Fang, Qin Zhou, Shanbi Zhou, Han Lei, Ailong Huang, Tingmei Chen, Dongsheng Ni, Yuping Gu, Jianing Liu, Yi Rao
Social conformity is fundamental to human societies and has been studied for more than six decades, but our understanding of its mechanisms remains limited. Individual differences in conformity have been attributed to social and cultural environmental influences, but not to genes. Here we demonstrate a genetic contribution to conformity after analyzing 1,140 twins and single-nucleotide polymorphism (SNP)-based studies of 2,130 young adults. A two-step genome-wide association study (GWAS) revealed replicable associations in 9 genomic loci, and a meta-analysis of three GWAS with a sample size of ~2,600 further confirmed one locus, corresponding to the NAV3 (Neuron Navigator 3) gene which encodes a protein important for axon outgrowth and guidance...
February 26, 2018: Journal of Human Genetics
Shutong Xu, Yiqiong Liu, Xiaolong Li, Ying Liu, Rob Meijers, Yan Zhang, Jia-Huai Wang
Netrin-1 plays a key role in axon guidance through binding to its receptor, Deleted in Colorectal Cancer (DCC). The initial step of signaling inside the cell after netrin-1/DCC ligation is the binding of DCC cytoplasmic P3 motif to focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK). Here we report the crystal structure of P3/FAT complex. The helical P3 peptide interacts with a helix-swapped FAT dimer in a 2:2 ratio. Dimeric FAT binding is P3-specific and stabilized by a calcium ion. Biochemical studies showed that DCC-P3 motif and calcium ion could facilitate FAT dimerization in solution...
2018: Cell Discovery
Zhongshan Cheng, Hang Zhou, Richard Sherva, Lindsay A Farrer, Henry R Kranzler, Joel Gelernter
BACKGROUND: Opioid dependence (OD) is at epidemic levels in the United States. Genetic studies can provide insight into its biology. METHODS: We completed an OD genome-wide association study in 3058 opioid-exposed European Americans, 1290 of whom met criteria for a DSM-IV diagnosis of OD. Analysis used DSM-IV criterion count. RESULTS: By meta-analysis of four cohorts, Yale-Penn 1 (n = 1388), Yale-Penn 2 (n = 996), Yale-Penn 3 (n = 98), and SAGE (Study of Addiction: Genetics and Environment) (n = 576), we identified a variant on chromosome 15, rs12442183, near RGMA, associated with OD (p = 1...
January 11, 2018: Biological Psychiatry
Santosh L Saraf, Justin R Sysol, Alexandru Susma, Suman Setty, Xu Zhang, Krishnamurthy P Gudehithlu, Jose A L Arruda, Ashok K Singh, Roberto F Machado, Victor R Gordeuk
Homozygosity for the hemoglobin (Hb) S mutation (HbSS, sickle cell anemia) results in hemoglobin polymerization under hypoxic conditions leading to vaso-occlusion and hemolysis. Sickle cell anemia affects 1:500 African Americans and is a strong risk factor for kidney disease, although the mechanisms are not well understood. Heterozygous inheritance (HbAS; sickle cell trait) affects 1:10 African Americans and is associated with an increased risk for kidney disease in some reports. Using transgenic sickle mice, we investigated the histopathologic, ultrastructural, and gene expression differences with the HbS mutation...
February 2, 2018: Translational Research: the Journal of Laboratory and Clinical Medicine
Fernando J Sialana, An-Li Wang, Benedetta Fazari, Martina Kristofova, Roman Smidak, Svenja V Trossbach, Carsten Korth, Joseph P Huston, Maria A de Souza Silva, Gert Lubec
Disrupted-in-schizophrenia 1 (DISC1) is a key protein involved in behavioral processes and various mental disorders, including schizophrenia and major depression. A transgenic rat overexpressing non-mutant human DISC1, modeling aberrant proteostasis of the DISC1 protein, displays behavioral, biochemical and anatomical deficits consistent with aspects of mental disorders, including changes in the dorsal striatum, an anatomical region critical in the development of behavioral disorders. Herein, dorsal striatum of 10 transgenic DISC1 (tgDISC1) and 10 wild type (WT) littermate control rats was used for synaptosomal preparations and for performing liquid chromatography-tandem mass spectrometry (LC-MS)-based quantitative proteomics, using isobaric labeling (TMT10plex)...
2018: Frontiers in Molecular Neuroscience
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"