Read by QxMD icon Read


Abigail J Sporer, Christopher Beierschmitt, Anastasia Bendebury, Katherine E Zink, Alexa Price-Whelan, Marisa C Buzzeo, Laura M Sanchez, Lars E P Dietrich
The activities of critical metabolic and regulatory proteins can be altered by exposure to natural or synthetic redox-cycling compounds. Many bacteria, therefore, possess mechanisms to transport or transform these small molecules. The opportunistic pathogen Pseudomonas aeruginosa PA14 synthesizes phenazines, redox-active antibiotics that are toxic to other organisms but have beneficial effects for their producer. Phenazines activate the redox-sensing transcription factor SoxR and thereby induce the transcription of a small regulon, including the operon mexGHI-opmD, which encodes an efflux pump that transports phenazines, and PA14_35160 (pumA), which encodes a putative monooxygenase...
April 9, 2018: Microbiology
Hassan Sakhtah, Leslie Koyama, Yihan Zhang, Diana K Morales, Blanche L Fields, Alexa Price-Whelan, Deborah A Hogan, Kenneth Shepard, Lars E P Dietrich
Redox-cycling compounds, including endogenously produced phenazine antibiotics, induce expression of the efflux pump MexGHI-OpmD in the opportunistic pathogen Pseudomonas aeruginosa Previous studies of P. aeruginosa virulence, physiology, and biofilm development have focused on the blue phenazine pyocyanin and the yellow phenazine-1-carboxylic acid (PCA). In P. aeruginosa phenazine biosynthesis, conversion of PCA to pyocyanin is presumed to proceed through the intermediate 5-methylphenazine-1-carboxylate (5-Me-PCA), a reactive compound that has eluded detection in most laboratory samples...
June 21, 2016: Proceedings of the National Academy of Sciences of the United States of America
Nikola Strempel, Anke Neidig, Michael Nusser, Robert Geffers, Julien Vieillard, Olivier Lesouhaitier, Gerald Brenner-Weiss, Joerg Overhage
A multitude of different virulence factors as well as the ability to rapidly adapt to adverse environmental conditions are important features for the high pathogenicity of Pseudomonas aeruginosa. Both virulence and adaptive resistance are tightly controlled by a complex regulatory network and respond to external stimuli, such as host signals or antibiotic stress, in a highly specific manner. Here, we demonstrate that physiological concentrations of the human host defense peptide LL-37 promote virulence factor production as well as an adaptive resistance against fluoroquinolone and aminoglycoside antibiotics in P...
2013: PloS One
Liang Yang, Lin Chen, Lixin Shen, Michael Surette, Kangmin Duan
Resistance-Nodulation-Cell Division (RND) pumps play important roles in bacterial resistance to antibiotics. Pseudomonas aeruginosa is an important human pathogen which exhibits high level resistance to antibiotics. There are total of 12 RND pumps present in the P. aeruginosa PAOl genome. The recently characterized MuxABC-OpmB system has been shown to play a role in resistance to novobiocin, aztreonam, macrolides, and tetracycline in a multiple knockout mutation. In this study, we examined the expression levels of all the 12 RND pump gene clusters and tested the involvement of MuxABC-OpmB in pathogenicity...
February 2011: Journal of Microbiology / the Microbiological Society of Korea
Jintae Lee, Can Attila, Suat L G Cirillo, Jeffrey D Cirillo, Thomas K Wood
Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7-hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)-regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI-opmD multidrug efflux pump and genes involved in the synthesis of QS-regulated virulence factors including pyocyanin (phz operon), 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon)...
January 2009: Microbial Biotechnology
Lars E P Dietrich, Alexa Price-Whelan, Ashley Petersen, Marvin Whiteley, Dianne K Newman
Certain members of the fluorescent pseudomonads produce and secrete phenazines. These heterocyclic, redox-active compounds are toxic to competing organisms, and the cause of these antibiotic effects has been the focus of intense research efforts. It is largely unknown, however, how pseudomonads themselves respond to - and survive in the presence of - these compounds. Using Pseudomonas aeruginosa DNA microarrays and quantitative RT-PCR, we demonstrate that the phenazine pyocyanin elicits the upregulation of genes/operons that function in transport [such as the resistance-nodulation-cell division (RND) efflux pump MexGHI-OpmD] and possibly in redox control (such as PA2274, a putative flavin-dependant monooxygenase), and downregulates genes involved in ferric iron acquisition...
September 2006: Molecular Microbiology
Séverine Aendekerk, Stephen P Diggle, Zhijun Song, Niels Høiby, Pierre Cornelis, Paul Williams, Miguel Cámara
In Pseudomonas aeruginosa the production of multiple virulence factors depends on cell-to-cell communication through the integration of N-acylhomoserine lactone (AHL)- and 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS)- dependent signalling. Mutation of genes encoding the efflux protein MexI and the porin OpmD from the MexGHI-OpmD pump resulted in the inability to produce N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-c12-hsl) and pqs and a marked reduction in n-butanoyl-L-homoserine lactone levels. Both pump mutants were impaired in growth and exhibited enhanced rather than reduced antibiotic resistance...
April 2005: Microbiology
Séverine Aendekerk, Bart Ghysels, Pierre Cornelis, Christine Baysse
Vanadium has an antibacterial activity against Pseudomonas aeruginosa, especially under conditions of iron limitation. Some degree of resistance to V is inducible by prior exposure to the metal. One mutant (VS1) with a higher sensitivity to V was obtained by transposon mutagenesis of P. aeruginosa PA 59.20, a clinical isolate. This mutant had an insertion in a non-coding region, upstream of a cluster of four genes. Three of them show similarities to genes corresponding to known P. aeruginosa antibiotic efflux systems, including an efflux protein, a membrane fusion protein and an outer-membrane porin...
August 2002: Microbiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"