Read by QxMD icon Read

restricted Boltzmann machine

Haiou Li, Jie Hou, Badri Adhikari, Qiang Lyu, Jianlin Cheng
BACKGROUND: Deep learning is one of the most powerful machine learning methods that has achieved the state-of-the-art performance in many domains. Since deep learning was introduced to the field of bioinformatics in 2012, it has achieved success in a number of areas such as protein residue-residue contact prediction, secondary structure prediction, and fold recognition. In this work, we developed deep learning methods to improve the prediction of torsion (dihedral) angles of proteins...
September 18, 2017: BMC Bioinformatics
Xin Chen, Jian Weng, Wei Lu, Jiaming Xu, Jiasi Weng
Learning deep representations have been applied in action recognition widely. However, there have been a few investigations on how to utilize the structural manifold information among different action videos to enhance the recognition accuracy and efficiency. In this paper, we propose to incorporate the manifold of training samples into deep learning, which is defined as deep manifold learning (DML). The proposed DML framework can be adapted to most existing deep networks to learn more discriminative features for action recognition...
September 15, 2017: IEEE Transactions on Neural Networks and Learning Systems
Ian McLoughlin, Jingjie Li, Yan Song, Hamid R Sharifzadeh
Statistical speech reconstruction for larynx-related dysphonia has achieved good performance using Gaussian mixture models and, more recently, restricted Boltzmann machine arrays; however, deep neural network (DNN)-based systems have been hampered by the limited amount of training data available from individual voice-loss patients. The authors propose a novel DNN structure that allows a partially supervised training approach on spectral features from smaller data sets, yielding very good results compared with the current state-of-the-art...
August 2017: Healthcare Technology Letters
Tae-Eui Kam, Heung-Il Suk, Seong-Whan Lee
Despite countless studies on autism spectrum disorder (ASD), diagnosis relies on specific behavioral criteria and neuroimaging biomarkers for the disorder are still relatively scarce and irrelevant for diagnostic workup. Many researchers have focused on functional networks of brain activities using resting-state functional magnetic resonance imaging (rsfMRI) to diagnose brain diseases, including ASD. Although some existing methods are able to reveal the abnormalities in functional networks, they are either highly dependent on prior assumptions for modeling these networks or do not focus on latent functional connectivities (FCs) by considering discriminative relations among FCs in a nonlinear way...
August 28, 2017: Human Brain Mapping
Xuan Peng, Xunzhang Gao, Yifan Zhang, Xiang Li
This paper proposes a new feature learning method for the recognition of radar high resolution range profile (HRRP) sequences. HRRPs from a period of continuous changing aspect angles are jointly modeled and discriminated by a single model named the discriminative infinite restricted Boltzmann machine (Dis-iRBM). Compared with the commonly used hidden Markov model (HMM)-based recognition method for HRRP sequences, which requires efficient preprocessing of the HRRP signal, the proposed method is an end-to-end method of which the input is the raw HRRP sequence, and the output is the label of the target...
July 20, 2017: Sensors
Yujian Li, Ting Zhang
The choice of kernel has an important effect on the performance of a support vector machine (SVM). The effect could be reduced by NEUROSVM, an architecture using multilayer perceptron for feature extraction and SVM for classification. In binary classification, a general linear kernel NEUROSVM can be theoretically simplified as an input layer, many hidden layers, and an SVM output layer. As a feature extractor, the sub-network composed of the input and hidden layers is first trained together with a virtual ordinary output layer by backpropagation, then with the output of its last hidden layer taken as input of the SVM classifier for further training separately...
September 2017: Neural Networks: the Official Journal of the International Neural Network Society
Nelly I Zhokhova, Igor I Baskin
In Energy-Based Neural Networks (EBNNs), relationships between variables are captured by means of a scalar function conventionally called "energy". In this article, we introduce a procedure of "harmony search", which looks for compounds providing the lowest energies for the EBNNs trained on active compounds. It can be considered as a special kind of similarity search that takes into account regularities in the structures of active compounds. In this paper, we show that harmony search can be used for performing virtual screening...
June 19, 2017: Molecular Informatics
Hardik B Sailor, Hemant A Patil
In this letter, authors propose an auditory feature representation technique with the filterbank learned using an annealing dropout convolutional restricted Boltzmann machine (ConvRBM) and noise-robust energy estimation using the Teager energy operator (TEO). TEO is applied on each subband of ConvRBM filterbank and pooled later to get the short-term spectral features. Experiments on AURORA 4 database show that the proposed features perform better than the Mel filterbank features. The relative improvement of 2...
June 2017: Journal of the Acoustical Society of America
Yaroslav Koshka, Dilina Perera, Spencer Hall, M A Novotny
The possibility of using a quantum computer D-Wave 2X with more than 1000 qubits to determine the global minimum of the energy landscape of trained restricted Boltzmann machines is investigated. In order to overcome the problem of limited interconnectivity in the D-Wave architecture, the proposed RBM embedding combines multiple qubits to represent a particular RBM unit. The results for the lowest-energy (the ground state) and some of the higher-energy states found by the D-Wave 2X were compared with those of the classical simulated annealing (SA) algorithm...
July 2017: Neural Computation
Johan A K Suykens
The aim of this letter is to propose a theory of deep restricted kernel machines offering new foundations for deep learning with kernel machines. From the viewpoint of deep learning, it is partially related to restricted Boltzmann machines, which are characterized by visible and hidden units in a bipartite graph without hidden-to-hidden connections and deep learning extensions as deep belief networks and deep Boltzmann machines. From the viewpoint of kernel machines, it includes least squares support vector machines for classification and regression, kernel principal components analysis (PCA), matrix singular value decomposition, and Parzen-type models...
May 31, 2017: Neural Computation
Enrique Romero Merino, Ferran Mazzanti Castrillejo, Jordi Delgado Pin
Restricted Boltzmann Machines (RBMs) are general unsupervised learning devices to ascertain generative models of data distributions. RBMs are often trained using the Contrastive Divergence (CD) learning algorithm, an approximation to the gradient of the data log-likelihood (logL). A simple reconstruction error is often used as a stopping criterion for CD, although several authors have raised doubts concerning the feasibility of this procedure. In many cases, the evolution curve of the reconstruction error is monotonic, while the logL is not, thus indicating that the former is not a good estimator of the optimal stopping point for learning...
May 17, 2017: IEEE Transactions on Neural Networks and Learning Systems
Dongdong Chen, Jiancheng Lv, Zhang Yi
The restricted Boltzmann machine (RBM) has received an increasing amount of interest in recent years. It determines good mapping weights that capture useful latent features in an unsupervised manner. The RBM and its generalizations have been successfully applied to a variety of image classification and speech recognition tasks. However, most of the existing RBM-based models disregard the preservation of the data manifold structure. In many real applications, the data generally reside on a low-dimensional manifold embedded in high-dimensional ambient space...
May 12, 2017: IEEE Transactions on Neural Networks and Learning Systems
Haidong Shao, Hongkai Jiang, Fuan Wang, Yanan Wang
Automatic and accurate identification of rolling bearing fault categories, especially for the fault severities and compound faults, is a challenge in rotating machinery fault diagnosis. For this purpose, a novel method called adaptive deep belief network (DBN) with dual-tree complex wavelet packet (DTCWPT) is developed in this paper. DTCWPT is used to preprocess the vibration signals to refine the fault characteristics information, and an original feature set is designed from each frequency-band signal of DTCWPT...
May 11, 2017: ISA Transactions
J Tubiana, R Monasson
Extracting automatically the complex set of features composing real high-dimensional data is crucial for achieving high performance in machine-learning tasks. Restricted Boltzmann machines (RBM) are empirically known to be efficient for this purpose, and to be able to generate distributed and graded representations of the data. We characterize the structural conditions (sparsity of the weights, low effective temperature, nonlinearities in the activation functions of hidden units, and adaptation of fields maintaining the activity in the visible layer) allowing RBM to operate in such a compositional phase...
March 31, 2017: Physical Review Letters
Alberto Testolin, Michele De Filippo De Grazia, Marco Zorzi
The recent "deep learning revolution" in artificial neural networks had strong impact and widespread deployment for engineering applications, but the use of deep learning for neurocomputational modeling has been so far limited. In this article we argue that unsupervised deep learning represents an important step forward for improving neurocomputational models of perception and cognition, because it emphasizes the role of generative learning as opposed to discriminative (supervised) learning. As a case study, we present a series of simulations investigating the emergence of neural coding of visual space for sensorimotor transformations...
2017: Frontiers in Computational Neuroscience
Marc M├ęzard
Motivated by recent progress in using restricted Boltzmann machines as preprocessing algorithms for deep neural network, we revisit the mean-field equations [belief-propagation and Thouless-Anderson Palmer (TAP) equations] in the best understood of such machines, namely the Hopfield model of neural networks, and we explicit how they can be used as iterative message-passing algorithms, providing a fast method to compute the local polarizations of neurons. In the "retrieval phase", where neurons polarize in the direction of one memorized pattern, we point out a major difference between the belief propagation and TAP equations: The set of belief propagation equations depends on the pattern which is retrieved, while one can use a unique set of TAP equations...
February 2017: Physical Review. E
Jan Melchior, Nan Wang, Laurenz Wiskott
[This corrects the article DOI: 10.1371/journal.pone.0171015.].
2017: PloS One
Lok-Won Kim
Although there have been many decades of research and commercial presence on high performance general purpose processors, there are still many applications that require fully customized hardware architectures for further computational acceleration. Recently, deep learning has been successfully used to learn in a wide variety of applications, but their heavy computation demand has considerably limited their practical applications. This paper proposes a fully pipelined acceleration architecture to alleviate high computational demand of an artificial neural network (ANN) which is restricted Boltzmann machine (RBM) ANNs...
March 8, 2017: IEEE Transactions on Neural Networks and Learning Systems
Nhathai Phan, Dejing Dou, Hao Wang, David Kil, Brigitte Piniewski
Human behavior modeling is a key component in application domains such as healthcare and social behavior research. In addition to accurate prediction, having the capacity to understand the roles of human behavior determinants and to provide explanations for the predicted behaviors is also important. Having this capacity increases trust in the systems and the likelihood that the systems actually will be adopted, thus driving engagement and loyalty. However, most prediction models do not provide explanations for the behaviors they predict...
April 2017: Information Sciences
Jan Melchior, Nan Wang, Laurenz Wiskott
We present a theoretical analysis of Gaussian-binary restricted Boltzmann machines (GRBMs) from the perspective of density models. The key aspect of this analysis is to show that GRBMs can be formulated as a constrained mixture of Gaussians, which gives a much better insight into the model's capabilities and limitations. We further show that GRBMs are capable of learning meaningful features without using a regularization term and that the results are comparable to those of independent component analysis. This is illustrated for both a two-dimensional blind source separation task and for modeling natural image patches...
2017: PloS One
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"