Read by QxMD icon Read


Neha Basotra, Baljit Kaur, Marcos Di Falco, Adrian Tsang, Bhupinder Singh Chadha
Mycothermus thermophilus (Syn. Scytalidium thermophilum/Humicola insolens), a thermophilic fungus, is being reported to produce appreciable titers of cellulases and hemicellulases during shake flask culturing on cellulose/wheat-bran/rice straw based production medium. The sequential and differential expression profile of endoglucanases, β-glucosidases, cellobiohydrolases and xylanases using zymography was studied. Mass spectrometry analysis of secretome (Q-TOF LC/MS) revealed a total of 240 proteins with 92 CAZymes of which 62 glycosyl hydrolases belonging to 30 different families were present...
October 8, 2016: Bioresource Technology
Jaana Kuuskeri, Mari Häkkinen, Pia Laine, Olli-Pekka Smolander, Fitsum Tamene, Sini Miettinen, Paula Nousiainen, Marianna Kemell, Petri Auvinen, Taina Lundell
BACKGROUND: The white-rot Agaricomycetes species Phlebia radiata is an efficient wood-decaying fungus degrading all wood components, including cellulose, hemicellulose, and lignin. We cultivated P. radiata in solid state cultures on spruce wood, and extended the experiment to 6 weeks to gain more knowledge on the time-scale dynamics of protein expression upon growth and wood decay. Total proteome and transcriptome of P. radiata were analyzed by peptide LC-MS/MS and RNA sequencing at specific time points to study the enzymatic machinery on the fungus' natural growth substrate...
2016: Biotechnology for Biofuels
Yuka Kojima, Anikó Várnai, Takuya Ishida, Naoki Sunagawa, Dejan M Petrovic, Kiyohiko Igarashi, Jody Jellison, Barry Goodell, Gry Alfredsen, Bjørge Westereng, Vincent G H Eijsink, Makoto Yoshida
: Fungi secrete a set of glycoside hydrolases and lytic polysaccharide monooxygenases (LPMOs) to degrade plant polysaccharides. Brown-rot fungi, such as Gloeophyllum trabeum, tend to have few LPMOs and information on these enzymes is scarce. The genome of G. trabeum encodes four AA9 LPMOs, whose coding sequences were amplified from cDNA. Due to alternative splicing, two variants of GtLPMO9A seem to be produced, a single domain variant, GtLPMO9A-1, and a longer variant, GtLPMO9A-2, which contains a C-terminal domain comprising approximately 55 residues without a predicted function...
September 2, 2016: Applied and Environmental Microbiology
Laura Nekiunaite, Magnus Ø Arntzen, Birte Svensson, Gustav Vaaje-Kolstad, Maher Abou Hachem
BACKGROUND: Starch is the second most abundant plant-derived biomass and a major feedstock in non-food industrial applications and first generation biofuel production. In contrast to lignocellulose, detailed insight into fungal degradation of starch is currently lacking. This study explores the secretomes of Aspergillus nidulans grown on cereal starches from wheat and high-amylose (HA) maize, as well as legume starch from pea for 5 days. RESULTS: Aspergillus nidulans grew efficiently on cereal starches, whereas growth on pea starch was poor...
2016: Biotechnology for Biofuels
Sona Garajova, Yann Mathieu, Maria Rosa Beccia, Chloé Bennati-Granier, Frédéric Biaso, Mathieu Fanuel, David Ropartz, Bruno Guigliarelli, Eric Record, Hélène Rogniaux, Bernard Henrissat, Jean-Guy Berrin
The enzymatic conversion of plant biomass has been recently revolutionized by the discovery of lytic polysaccharide monooxygenases (LPMOs) that carry out oxidative cleavage of polysaccharides. These very powerful enzymes are abundant in fungal saprotrophs. LPMOs require activation by electrons that can be provided by cellobiose dehydrogenases (CDHs), but as some fungi lack CDH-encoding genes, other recycling enzymes must exist. We investigated the ability of AA3_2 flavoenzymes secreted under lignocellulolytic conditions to trigger oxidative cellulose degradation by AA9 LPMOs...
2016: Scientific Reports
Van V Vu, Michael A Marletta
Polysaccharide degradation by hydrolytic enzymes glycoside hydrolases (GHs) is well known. More recently, polysaccharide monooxygenases (PMOs, also known as lytic PMOs or LPMOs) were found to oxidatively degrade various polysaccharides via a copper-dependent hydroxylation. PMOs were previously thought to be either GHs or carbohydrate binding modules (CBMs), and have been re-classified in carbohydrate active enzymes (CAZY) database as auxiliary activity (AA) families. These enzymes include cellulose-active fungal PMOs (AA9, formerly GH61), chitin- and cellulose-active bacterial PMOs (AA10, formerly CBM33), and chitin-active fungal PMOs (AA11)...
July 2016: Cellular and Molecular Life Sciences: CMLS
Gaston Courtade, Reinhard Wimmer, Maria Dimarogona, Mats Sandgren, Vincent G H Eijsink, Finn L Aachmann
The apo-form of the 23.3 kDa catalytic domain of the AA9 family lytic polysaccharide monooxygenase NcLPMO9C from Neurospora crassa has been isotopically labeled and recombinantly expressed in Pichia pastoris. In this paper, we report the (1)H, (13)C, and (15)N chemical shift assignments of this LPMO.
October 2016: Biomolecular NMR Assignments
Guru Jagadeeswaran, Lawrie Gainey, Rolf Prade, Andrew J Mort
Fungal genomes contain multiple genes encoding AA9 lytic polysaccharide monooxygenases (LPMOs), a recently discovered class of enzymes known to be active on cellulose and expressed when grown on biomass. Because of extensive genetic and biochemical data already available, Aspergillus nidulans offers an excellent model system to study the need for multiple AA9 LPMOs and their activity during oxidative degradation of biomass. We provide the first report on regulation of the entire family of AA9 LPMOs in A. nidulans over a range of polysaccharides including xylan, xyloglucan, pectin, glucan, and cellulose...
May 2016: Applied Microbiology and Biotechnology
Huihua Qu, Baoping Qu, Xueqian Wang, Yue Zhang, Jinjun Cheng, Wenhao Zeng, Shuchen Liu, Qingguo Wang, Yan Zhao
Daidzin, genistin, and glycitein are major isoflavone compounds in soybean that are indispensable nutrients in traditional Chinese foods. Generally, strategies for detecting and separating soy isoflavones have been based on HPLC and chromatographic techniques, which are tedious and time-consuming procedures. In the present study, we developed an ELISA-based approach for daidzin detection using a broad-specificity monoclonal antibody (clone number: AA9) with an effective detection range of 10-10 000 ng/mL. Subsequently, we prepared an immunoaffinity column by coupling the monoclonal antibody AA9 to CNBr-activated Sepharose 4B...
March 2016: Journal of Separation Science
Vanessa A L Rocha, Roberto N Maeda, Nei Pereira, Marcelo F Kern, Luisa Elias, Rachael Simister, Clare Steele-King, Leonardo D Gómez, Simon J McQueen-Mason
This study demonstrates the production of an active enzyme cocktail produced by growing Trichoderma harzianum on sugarcane bagasse. The component enzymes were identified by LCMS-MS. Glycosyl hydrolases were the most abundant class of proteins, representing 67% of total secreted protein. Other carbohydrate active enzymes involved in cell wall deconstruction included lytic polysaccharide mono-oxygenases (AA9), carbohydrate-binding modules, carbohydrate esterases and swollenin, all present at levels of 1%. In total, proteases and lipases represented 5 and 1% of the total secretome, respectively, with the rest of the secretome being made up of proteins of unknown or putative function...
March 2016: Biotechnology Progress
Thamy Lívia Ribeiro Corrêa, Leandro Vieira dos Santos, Gonçalo Amarante Guimarães Pereira
The lignocellulosic biomass, comprised mainly of cellulose, hemicellulose, and lignin, is a strong competitor for petroleum to obtain fuels and other products because of its renewable nature, low cost, and non-competitiveness with food production when obtained from agricultural waste. Due to its recalcitrance, lignocellulosic material requires an arsenal of enzymes for its deconstruction and the consequent release of fermentable sugars. In this context, enzymes currently classified as auxiliary activity 9 (AA9/formerly GH61) and 10 (AA10/formerly CBM 33) or lytic polysaccharide monooxygenases (LPMO) have emerged as cellulase boosting enzymes...
January 2016: Applied Microbiology and Biotechnology
Eva A Iniguez, Andrea Perez, Rosa A Maldonado, Rachid Skouta
Leishmania major (L. major) is a protozoan parasite causal agent of Leishmaniasis. It is estimated that 12 million people are currently infected and around 2 million infections occur each year. Current treatments suffer of high toxicity for the patient, low efficacy toward the parasite, high cost, and are losing effectiveness due to parasite resistance. Discovering novel small molecule with high specificity/selectivity and drug-like properties for anti-leishmanial activity remains a significant challenge. The purpose of this study is to communicate the design and synthesis strategies of novel chemical compounds based of the arylalkylamine scaffold with selective toxicity towards L...
November 15, 2015: Bioorganic & Medicinal Chemistry Letters
Fubao Fuebiol Sun, Jiapeng Hong, Jinguang Hu, Jack N Saddler, Xu Fang, Zhenyu Zhang, Song Shen
The potential of cellulase enzymes in the developing and ongoing "biorefinery" industry has provided a great motivation to develop an efficient cellulase mixture. Recent work has shown how important the role that the so-called accessory enzymes can play in an effective enzymatic hydrolysis. In this study, three newest Novozymes Cellic CTec cellulase preparations (CTec 1/2/3) were compared to hydrolyze steam pretreated lignocellulosic substrates and model substances at an identical FPA loading. These cellulase preparations were found to display significantly different hydrolytic performances irrelevant with the FPA...
November 2015: Enzyme and Microbial Technology
Magali Tanghe, Barbara Danneels, Andrea Camattari, Anton Glieder, Isabel Vandenberghe, Bart Devreese, Ingeborg Stals, Tom Desmet
The auxiliary activity family 9 (AA9, formerly GH61) harbors a recently discovered group of oxidative enzymes that boost cellulose degradation. Indeed, these lytic polysaccharide monooxygenases (LPMOs) are able to disrupt the crystalline structure of cellulose, thereby facilitating the work of hydrolytic enzymes involved in biomass degradation. Since these enzymes require an N-terminal histidine residue for activity, their recombinant production as secreted protein is not straightforward. We here report the expression optimization of Trichoderma reesei Cel61A (TrCel61A) in the host Pichia pastoris...
December 2015: Molecular Biotechnology
Matthias Frommhagen, Stefano Sforza, Adrie H Westphal, Jaap Visser, Sandra W A Hinz, Martijn J Koetsier, Willem J H van Berkel, Harry Gruppen, Mirjam A Kabel
BACKGROUND: Many agricultural and industrial food by-products are rich in cellulose and xylan. Their enzymatic degradation into monosaccharides is seen as a basis for the production of biofuels and bio-based chemicals. Lytic polysaccharide monooxygenases (LPMOs) constitute a group of recently discovered enzymes, classified as the auxiliary activity subgroups AA9, AA10, AA11 and AA13 in the CAZy database. LPMOs cleave cellulose, chitin, starch and β-(1 → 4)-linked substituted and non-substituted glucosyl units of hemicellulose under formation of oxidized gluco-oligosaccharides...
2015: Biotechnology for Biofuels
Sera Jung, Younho Song, Ho Myeong Kim, Hyeun-Jong Bae
Lignocellulose is a renewable resource that is extremely abundant, and the complete enzymatic hydrolysis of lignocellulose requires a cocktail containing a variety of enzyme groups that act synergistically. The hydrolysis efficiency can be improved by introducing glycoside hydrolase 61 (GH61), a new enzyme that belongs to the auxiliary activity family 9 (AA9). GH61was isolated from Gloeophyllum trabeum and cleaves the glycosidic bonds on the cellulose surface via oxidation of various carbons. In this study, we investigated the properties of GH61...
September 2015: Enzyme and Microbial Technology
Chloé Bennati-Granier, Sona Garajova, Charlotte Champion, Sacha Grisel, Mireille Haon, Simeng Zhou, Mathieu Fanuel, David Ropartz, Hélène Rogniaux, Isabelle Gimbert, Eric Record, Jean-Guy Berrin
BACKGROUND: The understanding of enzymatic polysaccharide degradation has progressed intensely in the past few years with the identification of a new class of fungal-secreted enzymes, the lytic polysaccharide monooxygenases (LPMOs) that enhance cellulose conversion. In the fungal kingdom, saprotrophic fungi display a high number of genes encoding LPMOs from family AA9 but the functional relevance of this redundancy is not fully understood. RESULTS: In this study, we investigated a set of AA9 LPMOs identified in the secretomes of the coprophilous ascomycete Podospora anserina, a biomass degrader of recalcitrant substrates...
2015: Biotechnology for Biofuels
Yuhong Huang, Peter Kamp Busk, Lene Lange
Specific enzymes from plant-pathogenic microbes demonstrate high effectiveness for natural lignocellulosic biomass degradation and utilization. The secreted lignocellulolytic enzymes of Fusarium species have not been investigated comprehensively, however. In this study we compared cellulose and hemicellulose-degrading enzymes of classical fungal enzyme producers with those of Fusarium species. The results indicated that Fusarium species are robust cellulose and hemicellulose degraders. Wheat bran, carboxymethylcellulose and xylan-based growth media induced a broad spectrum of lignocellulolytic enzymes in Fusarium commune...
June 2015: Enzyme and Microbial Technology
Peter K Busk, Lene Lange
BACKGROUND: Lytic polysaccharide monooxygenases are important enzymes for the decomposition of recalcitrant biological macromolecules such as plant cell wall and chitin polymers. These enzymes were originally designated glycoside hydrolase family 61 and carbohydrate-binding module family 33 but are now classified as auxiliary activities 9, 10 and 11 in the CAZy database. To obtain a systematic analysis of the divergent families of lytic polysaccharide monooxygenases we used Peptide Pattern Recognition to divide 5396 protein sequences resembling enzymes from families AA9 (1828 proteins), AA10 (2799 proteins) and AA11 (769 proteins) into subfamilies...
2015: BMC Genomics
In Jung Kim, Ki Hyun Nam, Eun Ju Yun, Sooah Kim, Hak Jin Youn, Hee Jin Lee, In-Geol Choi, Kyoung Heon Kim
Auxiliary activity family 9 (AA9, formerly known as glycoside hydrolase family 61 or polysaccharide monooxygenase) is a group of fungal proteins that were recently found to have a significant synergism with cellulase in cellulose hydrolysis via the oxidative cleavage of glycosidic bonds of cellulose chains. In this study, we report the active expression of a recombinant fungal AA9 from Chaetomium globosum (CgAA9) in a bacterial host, Escherichia coli, and the optimization of its synergistic activity in cellulose hydrolysis by using cellulase...
October 2015: Applied Microbiology and Biotechnology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"