Read by QxMD icon Read


Liangkun Long, Haoyuan Zhao, Dafan Ding, Meijuan Xu, Shaojun Ding
Feruloyl esterase (FAE)-encoding genes AnfaeA and AnfaeB were isolated from Aspergillus niger 0913. For overexpression of the two genes in Trichoderma reesei, constitutive and inductive expression plasmids were constructed based on parental plasmid pAg1-H3. The constructed plasmids contained AnfaeA or AnfaeB gene under the control of glyceraldehyde-3-phosphate dehydrogenase A gene (gpdA) promoter (from A. nidulans) or cellobiohydrolases I (cbh I) gene promoter (from T. reesei), and cbh I terminator from T. reesei...
January 18, 2018: Bioprocess and Biosystems Engineering
Abdul Basit, Junquan Liu, Kashif Rahim, Wei Jiang, Huiqiang Lou
Lignocellulosic biomass is a valuable raw material. As technology has evolved, industrial interest in new ways to take advantage of this raw material has grown. Biomass is treated with different microbial cells or enzymes under ideal industrial conditions to produce the desired products. Xylanases are the key enzymes that degrade the xylosidic linkages in the xylan backbone of the biomass, and commercial enzymes are categorized into different glycoside hydrolase families. Thermophilic microorganisms are excellent sources of industrially relevant thermostable enzymes that can withstand the harsh conditions of industrial processing...
January 17, 2018: Critical Reviews in Biotechnology
Nichole F Huntley, John F Patience
Xylose, as β-1,4-linked xylan, makes up much of the hemicellulose in cell walls of cereal carbohydrates fed to pigs. As inclusion of fibrous ingredients in swine diets continues to increase, supplementation of carbohydrases, such as xylanase, is of interest. However, much progress is warranted to achieve consistent enzyme efficacy, including an improved understanding of the utilization and energetic contribution of xylanase hydrolysis product (i.e. xylooligosaccharides or monomeric xylose). This review examines reports on xylose absorption and metabolism in the pig and identifies gaps in this knowledge that are essential to understanding the value of carbohydrase hydrolysis products in the nutrition of the pig...
2018: Journal of Animal Science and Biotechnology
Hui Suan Ng, Cindy Xin Yi Chai, Yin Hui Chow, Wai Leng Carmen Loh, Hip Seng Yim, Joo Shun Tan, John Chi-Wei Lan
Xylanase enzyme degrades linear polysaccharide β-1,4 xylan and the hemicellulose of the plant cell wall. There is a growing demand in finding a cost-effective alternative for industrial scale production of xylanase with high purity for pharmaceutical applications. In this study, an alcohol/salt aqueous biphasic system (ABS) was adopted to recover xylanase from the Bacillus subtilis fermentation broth. The effects of several ABS parameters such as types and concentrations of alcohols and salts (i.e., sulphate, phosphate, and citrate), amount of crude loading and pH of the system on the recovery of xylanase were investigated...
January 12, 2018: Journal of Bioscience and Bioengineering
Mursalin Sajib, Peter Falck, Roya R R Sardari, Sindhu Mathew, Carl Grey, Eva Nordberg Karlsson, Patrick Adlercreutz
Brewer's spent grain (BSG) accounts for around 85% of the solid by-products from beer production. BSG was first extracted to obtain water-soluble arabinoxylan (AX). Using subsequent alkali extraction (0.5 M KOH) it was possible to dissolve additional AX. In total, about 57% of the AX in BSG was extracted with the purity of 45-55%. After comparison of nine xylanases, Pentopan mono BG, a GH11 enzyme, was selected for hydrolysis of the extracts to oligosaccharides with minimal formation of monosaccharides. Growth of Bifidobacterium adolescentis (ATCC 15703) was promoted by the enzymatic hydrolysis to arabinoxylooligosaccharides, while Lactobacillus brevis (DSMZ 1264) utilized only unsubstituted xylooligosaccharides...
January 11, 2018: Journal of Biotechnology
Amina Elahi, Abdul Rehman
In the present work, a yeast strain Pichia kudriavzevii was identified on the basis of 18S rDNA, showing maximum growth at 30°C and pH 7.0. Among all the complex polysaccharides used, wheat bran proved to be the best substrate as indicated by the maximum growth of the yeast strain. The yeast isolate was capable of producing xylanase both intra- and extra-cellularly, the dominant form being extracellular. The maximum enzyme activity was determined at pH 5.0 and at 50°C. Na+, Mg2+ and Fe2+ presence caused a substantial increase in enzyme activity while a slight decrease (4...
January 11, 2018: Revista Argentina de Microbiología
Jiajin Liang, Xiuxiu Fang, Yunqin Lin, Dehan Wang
Recalcitrance limits biomass application in biorefinery. It is even more so when toxic chlorophenols are present. In this study, we screened a microbial consortium, OEM2, for lignocellulose deconstruction and chlorophenols detoxification through a short-term and efficient screening process. Microbial consortium OEM2 had a good buffer capability in the cultivation process and exhibited a high xylanase activity, with over 85% hemicellulose degradation within 12 days. Throughout the treatment process, 41.5% rice straw decomposition on day 12 and around 75% chlorophenols (MCP, 2,4-DCP, 2,4,6-TCP) removal on day 9, were recorded...
January 11, 2018: Journal of Hazardous Materials
Zhi Zhu, Zhen-Hui Song, Li-Ting Cao, Yong Wang, Wen-Zhang Zhou, Pei Zhou, Fu-Yuan Zuo
This study was conducted to evaluate effects of traditional Chinese medicine formula (TCMF) combined with several herbs on ruminal fermentation, enzyme activities and nutrient digestibility. Twenty finishing bulls were assigned to control or different TCMFs (Yufeisan-1, -2, -3; 2.5% dry matter (DM) in concentrate). Results showed that DM intake was higher (P < 0.05) in the Yufeisan-3 group than others. Compared to control, apparent digestibility of crude protein and neutral detergent fiber were increased (P < 0...
January 12, 2018: Animal Science Journal, Nihon Chikusan Gakkaihō
Ruiqin Zhong, Dongtao Cui, Dennis R Phillips, Zheng-Hua Ye
Xylan is a major hemicellulose in both primary walls and secondary walls of grass species. It consists of a linear backbone of β-1,4-linked xylosyl residues that are often substituted with monosaccharides and disaccharides. Xylosyl substitutions directly on the xylan backbone have not been reported in grass species and genes responsible for xylan substitutions in grass species have not been well elucidated. Here, we report functional characterization of a rice (Oryza sativa) GT61 glycosyltransferase, XYXT1 (xylan xylosyltransferase1), for its role in xylan substitutions...
January 9, 2018: Plant & Cell Physiology
Svetlana Kišidayová, Peter Pristaš, Michaela Zimovčáková, Monika Blanár Wencelová, Lucia Homol'ová, Katarína Mihaliková, Klaudia Čobanová, Ľubomíra Grešáková, Zora Váradyová
Little is known about the effects of the high dose and types of manganese supplements on rumen environment at manganese intake level close above the limit of 150 mg/kg of dry feed matter. The effects of high dose of two manganese supplements (organic and inorganic) on rumen microbial ecosystem after four months of treatment of 18 lambs divided into three treatment groups were studied. We examined the enzyme activities (α-amylase, xylanase, and carboxymethyl cellulase), total and differential microscopic counts of rumen ciliates, total microscopic counts of bacteria, and fingerprinting pattern of the eubacterial and ciliates population analyzed by PCR-DGGE...
2018: PloS One
Monika Grzegorczyk, Anna Kancelista, Wojciech Łaba, Michał Piegza, Danuta Witkowska
The study evaluates the survivability and storage stability of seven Trichoderma strains belonging to the species: T. harzianum (1), T. atroviride (4), and T. virens (2) after the lyophilization of their solid state cultures on wheat straw. Biomass of Trichoderma strains was freeze-dried with and without the addition of maltodextrin. Furthermore, in order to determine the ability of tested Trichoderma strains to preserve selected technological features, the biosynthesis of extracellular hydrolases (cellulases, xylanases, and polygalacturonases) after a 3-month storage of lyophilizates was investigated...
January 5, 2018: Folia Microbiologica
O Olgun, Y Altay, Alp O Yildiz
1. This study was conducted to determine the effects of enzyme supplementation of maize/wheat-based diets on the performance, egg quality, and serum and bone parameters of laying hens. 2. During the 12-week experimental period, a total of 72 laying hens aged 52 weeks were randomly distributed among 6 experimental groups. Each experimental group contained 4 replicates, each with three birds. The experiment was a randomised design consisting of a 3×2 factorial arrangement, with three levels of wheat substitution and two levels of enzyme (xylanase: 1500...
January 5, 2018: British Poultry Science
Vladimír Puchart, Lucia Fraňová, Kristian B R Mørkeberg Krogh, Tine Hoff, Peter Biely
Most studies of the mode of action of industrially important endoxylanases have been done on alkali extracted-plant xylan. In just few cases, the native form of the polysaccharide, acetylated xylan, was used as a substrate. In this work action of xylanases belonging to three glycoside hydrolase families, GH10, GH11, and GH30 was investigated on acetylglucuronoxylan directly in hardwood cell walls. Powdered eucalyptus wood was used as xylanase substrate. Enzyme-generated fragments were characterized by TLC, MALDI ToF MS, and NMR spectroscopy...
January 4, 2018: Applied Microbiology and Biotechnology
Benjarat Bunterngsook, Thanaporn Laothanachareon, Chayanon Chotirotsukon, Hiroyuki Inoue, Tatsuya Fujii, Tamotsu Hoshino, Niran Roongsawang, Sanchai Kuboon, Wasawat Kraithong, Wikanda Techanan, Natthakorn Kraikul, Verawat Champreda
Designing a tailor-made synergistic system is a promising strategy for developing an effective enzyme for saccharification of lignocellulosic materials. In this study, a cellulolytic enzyme mixture comprising selected core recombinant enzymes for hydrolysis of sugarcane bagasse pretreated by alkaline-catalyzed steam explosion was optimized using a mixture design approach. The optimized enzyme system comprised a cellobiohydrolase (Cel7A) from Talaromyces cellulolyticus, an endo-glucanase (Cel7B) from Thielavia terrestris, a β-glucosidase (BGL) and an endo-β1,4-xylanase (XYN) from Aspergillus aculeatus at the ratio of 0...
December 28, 2017: Journal of Bioscience and Bioengineering
Eric Husson, Thomas Auxenfans, Mickael Herbaut, Manon Baralle, Virginie Lambertyn, Harivoni Rakotoarivonina, Caroline Rémond, Catherine Sarazin
Sequential and simultaneous strategies for fractioning wheat straw were developed in combining 1-ethyl-3-methyl imidazolium acetate [C2mim][OAc], endo-xylanases from Thermobacillus xylanilyticus and commercial cellulases. After [C2mim][OAc]-pretreatment, hydrolysis catalyzed by endo-xylanases of wheat straw led to efficient xylose production with very competitive yield (97.6 ± 1.3%). Subsequent enzymatic saccharification allowed achieving a total degradation of cellulosic fraction (>99%). These high performances revealed an interesting complementarity of [C2mim][OAc]- and xylanase-pretreatments for increasing enzymatic digestibility of cellulosic fraction in agreement with the structural and morphological changes of wheat straw induced by each of these pretreatment steps...
December 18, 2017: Bioresource Technology
Qi Bei, Gong Chen, Fangju Lu, Sheng Wu, Zhenqiang Wu
This work aims to investigate the effects of carbohydrate-hydrolysing enzymes on the release of phenolics in oat fermentation with Monascus anka. There were good correlations between phenolic content and α-amylase, xylanase and FPase activities. A high level of α-amylase activity (141.07 U/g) was observed, while xylanase (2.40 U/g), total cellulase (0.52 U/g) and β-glucosidase activities (0.028 U/g) were relatively low in the fermentation system. The phenolic content of oat powder treated with crude enzyme from fermented oats significantly increased, especially that of the ferulic acid in the insoluble fraction and the vanillic acid in the soluble fraction...
April 15, 2018: Food Chemistry
Yujia Jiang, Jie Liu, Weiliang Dong, Wenming Zhang, Yan Fang, Jiangfeng Ma, Min Jiang, Fengxue Xin
A novel thermophilic and butanogenic Thermoanaerobacterium thermosaccharolyticum M5 was successfully isolated and characterized, which could produce butanol from hemicellulose via a unique ethanol-butanol (EB) pathway through consolidated bioprocessing (CBP). This represents the first wild-type bacterium which could produce butanol from hemicellulose via CBP under thermophilic conditions. The assembled draft genome of strain M5 is 2.64 Mp, which contains 2638 genes and 2465 protein-coding sequences with 33...
December 26, 2017: Current Microbiology
Chuannan Long, Jingjing Cui, Hailong Li, Jian Liu, Lihui Gan, Bin Zeng, Minnan Long
The goal of this study was to enhance the production of xylooligosaccharides (XOs) and reduce the production of xylose. We investigated β-xylosidases, which were key enzymes in the hydrolysis of xylan into xylose, in Trichoderma orientalis EU7-22. The binary vector pUR5750G/bxl::hph was constructed to knock out the β-xyl1 gene (encoding β-xylosidases) in T. orientalis EU7-22 by homologous integration, producing the mutant strain T. orientalis Bxyl-1. Xylanase activity for strain Bxyl-1 was 452.42 IU/mL, which increased by only 0...
January 2018: 3 Biotech
Danilo Elton Evangelista, Marco Antonio Seiki Kadowaki, Bruno Luan Mello, Igor Polikarpov
Environmental issues are promoting the development of innovative technologies for the production of renewable energy and "green products" from plant biomass residues. These technologies rely on the conversion of the plant cell wall (PCW) polysaccharides into simple sugars, which involve synergistic activities of different PCW degrading enzymes, including xylanases; these are widely applied in food and feed sectors, paper and textile industries, among others. We cloned, expressed and biochemically characterized a novel xylanase (Xyn10) from the GH10 identified in a metatranscriptome of compost-derived microbial consortia and determined its low-resolution SAXS molecular envelope in solution...
December 20, 2017: International Journal of Biological Macromolecules
Akanksha Singh, Rupali Gupta, Sudeep Tandon, Prateeksha, Rakesh Pandey
The present investigation for the first time explains the anti biofilm and anti virulence potential of Kaffir lime oil (KLO) and its major constituent, Citronellal (3,7-dimethyloct-6-enal) against Xanthomonas oryzae pv. oryzae, causal organism of bacterial blight disease of rice. KLO at 500 ppm showed potential activity against X. oryzae pv. oryzae. Among the major components identified, citronellal (CIT) at 75 μM concentration was found to significantly inhibit biofilm along with the swimming and swarming potential of X...
December 19, 2017: Microbial Pathogenesis
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"