keyword
MENU ▼
Read by QxMD icon Read
search

parylation

keyword
https://www.readbyqxmd.com/read/28510338/therapeutic-targeting-of-poly-adp-ribose-polymerase-1-in-cancer-current-developments-therapeutic-strategies-and-future-opportunities
#1
REVIEW
Jyotika Rajawat, Nidhi Shukla, Durga Prasad Mishra
Poly(ADP-ribose) polymerase-1 (PARP1) is key protein involved in numerous cellular processes including DNA repair, replication, and transcription. PARP interacts directly, indirectly, or via PARylation with various oncogenic proteins and regulates several transcription factors, thereby modulating carcinogenesis. Therapeutic inhibition of PARP is therefore perceived as a promising anticancer strategy, and a number of PARP inhibitors (PARPi) are in different stages of clinical evaluation. PARPi inhibit the DNA repair pathway and thus form the concept of synthetic lethality in cancer therapeutics...
May 16, 2017: Medicinal Research Reviews
https://www.readbyqxmd.com/read/28503382/poly-adp-ribosylation-is-present-in-murine-sciatic-nerve-fibers-and-is-altered-in-a-charcot-marie-tooth-1e-neurodegenerative-model
#2
Laura I Lafon Hughes, Carlos J Romeo Cardeillac, Karina B Cal Castillo, Salomé C Vilchez Larrea, José R Sotelo Sosa, Gustavo A Folle Ungo, Silvia H Fernández Villamil, Alejandra E Kun González
BACKGROUND: Poly-ADP-ribose (PAR) is a polymer synthesized by poly-ADP-ribose polymerases (PARPs) as a postranslational protein modification and catabolized mainly by poly-ADP-ribose glycohydrolase (PARG). In spite of the existence of cytoplasmic PARPs and PARG, research has been focused on nuclear PARPs and PAR, demonstrating roles in the maintenance of chromatin architecture and the participation in DNA damage responses and transcriptional regulation. We have recently detected non-nuclear PAR structurally and functionally associated to the E-cadherin rich zonula adherens and the actin cytoskeleton of VERO epithelial cells...
2017: PeerJ
https://www.readbyqxmd.com/read/28457938/parp-inhibition-protects-mitochondria-and-reduces-ros-production-via-parp-1-atf4-mkp-1-mapk-retrograde-pathway
#3
Eniko Hocsak, Viktor Szabo, Nikoletta Kalman, Csenge Antus, Anna Cseh, Katalin Sumegi, Krisztian Eros, Zoltan Hegedus, Ferenc Gallyas, Balazs Sumegi, Boglarka Racz
Oxidative stress induces DNA breaks and PARP-1 activation which initiates mitochondrial reactive oxygen species (ROS) production and cell death through pathways not yet identified. Here, we show the mechanism by which PARP-1 influences these processes via PARylation of activating transcription factor-4 (ATF4) responsible for MAP kinase phosphatase-1 (MKP-1) expression and thereby regulates MAP kinases. PARP inhibitor, or silencing, of PARP induced MKP-1 expression by ATF4-dependent way, and inactivated JNK and p38 MAP kinases...
April 27, 2017: Free Radical Biology & Medicine
https://www.readbyqxmd.com/read/28445046/lead-discovery-of-dual-g-quadruplex-stabilizers-and-poly-adp-ribose-polymerases-parps-inhibitors-a-new-avenue-in-anticancer-treatment
#4
Erica Salvati, Lorenzo Botta, Jussara Amato, Francesco Saverio Di Leva, Pasquale Zizza, Antimo Gioiello, Bruno Pagano, Grazia Graziani, Madalena Tarsounas, Antonio Randazzo, Ettore Novellino, Annamaria Biroccio, Sandro Cosconati
G-quadruplex stabilizers are an established opportunity in anticancer chemotherapy. To circumvent the antiproliferative effects of G4 ligands, cancer cells recruit PARP enzymes at telomeres. Herein, starting from the structural similarity of a potent G4 ligand previously discovered by our group and a congeneric PARP inhibitor, a library of derivatives was synthesized to discover the first dual G4/PARP ligand. We demonstrate that a properly decorated thieno[3,2-c]quinolin-4(5H)-one stabilizes the G4 fold in vitro and in cells, induces a DNA damage response localized to telomeres, inhibits PARylation in cells, and has an antiproliferative effect in BRCA2 deficient tumor cells...
May 11, 2017: Journal of Medicinal Chemistry
https://www.readbyqxmd.com/read/28442756/crystal-structure-based-discovery-of-a-novel-synthesized-parp1-inhibitor-ol-1-with-apoptosis-inducing-mechanisms-in-triple-negative-breast-cancer
#5
Leilei Fu, Shuya Wang, Xuan Wang, Peiqi Wang, Yaxin Zheng, Dahong Yao, Mingrui Guo, Lan Zhang, Liang Ouyang
Poly (ADP-ribose) polymerase-1 (PARP1) is a highly conserved enzyme focused on the self-repair of cellular DNA damage. Until now, numbers of PARP inhibitors have been reported and used for breast cancer therapy in recent years, especially in TNBC. However, developing a new type PARP inhibitor with distinctive skeleton is alternatively promising strategy for TNBC therapy. In this study, based on co-crystallization studies and pharmacophore-docking-based virtual screening, we discovered a series of dihydrodibenzo[b,e]-oxepin compounds as PARP1 inhibitors...
December 5, 2016: Scientific Reports
https://www.readbyqxmd.com/read/28431224/adp-ribosylation-goes-normal-serine-as-the-major-site-of-the-modification
#6
Qiang Liu, Bogdan I Florea, Dmitri V Filippov
Proteins containing adenosine diphosphate ribosylserine as a posttranslational modification are widespread and formed via HPF1-assisted, PARP-1-mediated PARylation as Bonfiglio et al. (2017) report in a recent issue of Molecular Cell.
April 20, 2017: Cell Chemical Biology
https://www.readbyqxmd.com/read/28302504/mitochondrial-nudix-hydrolases-a-metabolic-link-between-nad-catabolism-gtp-and-mitochondrial-dynamics
#7
Aaron Long, Nina Klimova, Tibor Kristian
NAD(+) catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD(+) catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism...
March 14, 2017: Neurochemistry International
https://www.readbyqxmd.com/read/28272405/parp1-promotes-gene-expression-at-the-post-transcriptiona-level-by-modulating-the-rna-binding-protein-hur
#8
Yueshuang Ke, Yanlong Han, Xiaolan Guo, Jitao Wen, Ke Wang, Xue Jiang, Xue Tian, Xueqing Ba, Istvan Boldogh, Xianlu Zeng
Poly(ADP-ribosyl)ation (PARylation) is mainly catalysed by poly-ADP-ribose polymerase 1 (PARP1), whose role in gene transcription modulation has been well established. Here we show that, in response to LPS exposure, PARP1 interacts with the adenylateuridylate-rich element-binding protein embryonic lethal abnormal vision-like 1 (Elavl1)/human antigen R (HuR), resulting in its PARylation, primarily at site D226. PARP inhibition and the D226 mutation impair HuR's PARylation, nucleocytoplasmic shuttling and mRNA binding...
March 8, 2017: Nature Communications
https://www.readbyqxmd.com/read/28257697/serious-surprises-for-adp-ribosylation-specificity-hpf1-switches-parp1-specificity-to-ser-residues
#9
Anthony K L Leung
In this issue of Molecular Cell, Bonfiglio et al. (2017) demonstrate that histone PARylation factor 1 (HPF1) is required for PARP1 to attach ADP-ribose groups onto the hydroxyl oxygen of the Ser residues of target substrates, including both PARP1 itself and histones. Here, mechanisms and implications of this unexpected, O-linked ADP-ribosylation are speculated on.
March 2, 2017: Molecular Cell
https://www.readbyqxmd.com/read/28249904/nr1d1-recruitment-to-sites-of-dna-damage-inhibits-repair-and-is-associated-with-chemosensitivity-of-breast-cancer
#10
Na-Lee Ka, Tae-Young Na, Hyelin Na, Min-Ho Lee, Han-Su Park, Sewon Hwang, Il Yong Kim, Je Kyung Seong, Mi-Ock Lee
DNA repair capacity is critical for survival of cancer cells upon therapeutic DNA damage and thus is an important determinant of susceptibility to chemotherapy in cancer patients. In this study, we identified a novel function of nuclear receptor NR1D1 in DNA repair, which enhanced chemosensitivity in breast cancer cells. NR1D1 inhibited both nonhomologous end joining and homologous recombination double-strand breaks repair, and delayed the clearance of γH2AX DNA repair foci that formed after treatment of doxorubicin...
March 1, 2017: Cancer Research
https://www.readbyqxmd.com/read/28239158/synthesis-of-the-novel-parp-1-inhibitor-ag-690-11026014-and-its-protective-effects-on-angiotensin-ii-induced-mouse-cardiac-remodeling
#11
Guo-Shuai Feng, Cui-Ge Zhu, Zhuo-Ming Li, Pan-Xia Wang, Yi Huang, Min Liu, Ping He, Lan-Lan Lou, Shao-Rui Chen, Pei-Qing Liu
We previously identified AG-690/11026014 (6014) as a novel poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor that effectively prevented angiotensin II (Ang II)-induced cardiomyocyte hypertrophy. In the present study, we reported a new synthesis route for 6014, and investigated its protective effects on Ang II-induced cardiac remodeling and cardiac dysfunction and the underlying mechanisms in mice. We designed a new synthesis route to obtain a sufficient quantity of 6014 for this in vivo study. C57BL/6J mice were infused with Ang II and treated with 6014 (10, 30, 90 mg·kg(-1)·d(-1), ig) for 4 weeks...
May 2017: Acta Pharmacologica Sinica
https://www.readbyqxmd.com/read/28220129/no-silver-bullet-canonical-poly-adp-ribose-polymerases-parps-are-no-universal-factors-of-abiotic-and-biotic-stress-resistance-of-arabidopsis-thaliana
#12
Dagmar Rissel, Peter P Heym, Kathrin Thor, Wolfgang Brandt, Ludger A Wessjohann, Edgar Peiter
Abiotic and biotic stress can have a detrimental impact on plant growth and productivity. Hence, there is a substantial demand for key factors of stress responses to improve yield stability of crops. Members of the poly(ADP-ribose)polymerase (PARP) protein family, which post-translationally modify (PARylate) nuclear proteins, have been suggested as such universal determinants of plant stress responses. A role under abiotic stress has been inferred from studies in which a genetic or, more commonly, pharmacological inhibition of PARP activity improved the performance of stressed plants...
2017: Frontiers in Plant Science
https://www.readbyqxmd.com/read/28190768/serine-adp-ribosylation-depends-on-hpf1
#13
Juan José Bonfiglio, Pietro Fontana, Qi Zhang, Thomas Colby, Ian Gibbs-Seymour, Ilian Atanassov, Edward Bartlett, Roko Zaja, Ivan Ahel, Ivan Matic
ADP-ribosylation (ADPr) regulates important patho-physiological processes through its attachment to different amino acids in proteins. Recently, by precision mapping on all possible amino acid residues, we identified histone serine ADPr marks in the DNA damage response. However, the biochemical basis underlying this serine modification remained unknown. Here we report that serine ADPr is strictly dependent on histone PARylation factor 1 (HPF1), a recently identified regulator of PARP-1. Quantitative proteomics revealed that serine ADPr does not occur in cells lacking HPF1...
March 2, 2017: Molecular Cell
https://www.readbyqxmd.com/read/28107648/parp-1-controls-the-adipogenic-transcriptional-program-by-parylating-c-ebp%C3%AE-and-modulating-its-transcriptional-activity
#14
Xin Luo, Keun Woo Ryu, Dae-Seok Kim, Tulip Nandu, Carlos J Medina, Rebecca Gupte, Bryan A Gibson, Raymond E Soccio, Yonghao Yu, Rana K Gupta, W Lee Kraus
Poly(ADP-ribosyl)ation (PARylation) is a post-translational modification of proteins mediated by PARP family members, such as PARP-1. Although PARylation has been studied extensively, few examples of definitive biological roles for site-specific PARylation have been reported. Here we show that C/EBPβ, a key pro-adipogenic transcription factor, is PARylated by PARP-1 on three amino acids in a conserved regulatory domain. PARylation at these sites inhibits C/EBPβ's DNA binding and transcriptional activities and attenuates adipogenesis in various genetic and cell-based models...
January 19, 2017: Molecular Cell
https://www.readbyqxmd.com/read/28099939/type-5-phosphodiesterase-regulates-glioblastoma-multiforme-aggressiveness-and-clinical-outcome
#15
Valeriana Cesarini, Maurizio Martini, Lucia Ricci Vitiani, Giovanni Luca Gravina, Silvia Di Agostino, Grazia Graziani, Quintino Giorgio D'Alessandris, Roberto Pallini, Luigi M Larocca, Pellegrino Rossi, Emmanuele A Jannini, Susanna Dolci
Expression of type 5 phosphodiesterase (PDE5), a cGMP-specific hydrolytic enzyme, is frequently altered in human cancer, but its specific role in tumorigenesis remains controversial. Herein, by analyzing a cohort of 69 patients affected by glioblastoma multiforme (GBM) who underwent chemo- and radiotherapy after surgical resection of the tumor, we found that PDE5 was strongly expressed in cancer cells in about 50% of the patients. Retrospective analysis indicated that high PDE5 expression in GBM cells significantly correlated with longer overall survival of patients...
February 21, 2017: Oncotarget
https://www.readbyqxmd.com/read/28032120/inhibition-of-poly-adp-ribosylation-fails-to-increase-axonal-regeneration-or-improve-functional-recovery-after-adult-mammalian-cns-injury
#16
Xingxing Wang, Yuichi Sekine, Alexandra B Byrne, William B J Cafferty, Marc Hammarlund, Stephen M Strittmatter
After traumatic damage of the brain or spinal cord, many surviving neurons are disconnected, and recovery of function is limited by poor axon regeneration. Recent data have suggested that poly ADP-ribosylation plays a role in limiting axonal regrowth such that inhibition of poly (ADP-ribose) polymerase (PARP) may have therapeutic efficacy for neurological recovery after trauma. Here, we tested systemic administration of the PARP inhibitor, veliparib, and showed effective suppression of PARylation in the mouse CNS...
November 2016: ENeuro
https://www.readbyqxmd.com/read/28013023/metabolic-roles-of-poly-adp-ribose-polymerases
#17
REVIEW
András Vida, Judit Márton, Edit Mikó, Péter Bai
Poly(ADP-ribosyl)ation (PARylation) is an evolutionarily conserved reaction that had been associated with numerous cellular processes such as DNA repair, protein turnover, inflammatory regulation, aging or metabolic regulation. The metabolic regulatory tasks of poly(ADP-ribose) polymerases (PARPs) are complex, it is based on the regulation of metabolic transcription factors (e.g. SIRT1, nuclear receptors, SREBPs) and certain cellular energy sensors. PARP over-activation can cause damage to mitochondrial terminal oxidation, while the inhibition of PARP-1 or PARP-2 can induce mitochondrial oxidation by enhancing the mitotropic tone of gene transcription and signal transduction...
March 2017: Seminars in Cell & Developmental Biology
https://www.readbyqxmd.com/read/27965086/the-effect-of-poly-adp-ribosyl-ation-inhibition-on-the-porcine-cumulus-oocyte-complex-during-in%C3%A2-vitro-maturation
#18
Duk Hyoun Kim, Hye Ran Lee, Min Gyeong Kim, Jun Sung Lee, Su Jin Jin, Hoon Taek Lee
Poly(ADP-ribosyl)ation (PARylation) plays important roles in DNA repair, apoptosis, transcriptional regulation, and cell death, and occurs via the activity of poly(ADP-ribose) polymerases (PARPs). Previous studies have shown that PARylation affects mouse and porcine pre-implantation development and participates in mechanisms of autophagy. However, there have not yet been reported the role of PARylation during in vitro maturation (IVM) of porcine oocytes. Thus, we investigated the effect of PARylation inhibition on this process; cumulus-oocyte complexes (COCs) were cultured with 3-aminobenzamide (3-ABA, PARP inhibitor) during porcine IVM...
January 29, 2017: Biochemical and Biophysical Research Communications
https://www.readbyqxmd.com/read/27920426/crystal-structure-based-discovery-of-a-novel-synthesized-parp1-inhibitor-ol-1-with-apoptosis-inducing-mechanisms-in-triple-negative-breast-cancer
#19
Leilei Fu, Shuya Wang, Xuan Wang, Peiqi Wang, Yaxin Zheng, Dahong Yao, Mingrui Guo, Lan Zhang, Liang Ouyang
Poly (ADP-ribose) polymerase-1 (PARP1) is a highly conserved enzyme focused on the self-repair of cellular DNA damage. Until now, numbers of PARP inhibitors have been reported and used for breast cancer therapy in recent years, especially in TNBC. However, developing a new type PARP inhibitor with distinctive skeleton is alternatively promising strategy for TNBC therapy. In this study, based on co-crystallization studies and pharmacophore-docking-based virtual screening, we discovered a series of dihydrodibenzo[b,e]-oxepin compounds as PARP1 inhibitors...
December 2016: Scientific Reports
https://www.readbyqxmd.com/read/27908606/parp1-orchestrates-epigenetic-events-setting-up-chromatin-domains
#20
REVIEW
Fabio Ciccarone, Michele Zampieri, Paola Caiafa
Epigenetic events include reversible modifications of DNA and histone tails driving chromatin organization and thus transcription. The epigenetic regulation is a highly integrated process underlying the plasticity of the genomic information both in the context of complex physiological and pathological processes. The global regulatory aspects of epigenetic events are largely unknown. PARylation and PARP1 are recently emerging as multi-level regulatory effectors that modulate the topology of chromatin by orchestrating very different processes...
March 2017: Seminars in Cell & Developmental Biology
keyword
keyword
74282
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"