Read by QxMD icon Read

C.elegans embryo

Jacques Pécréaux, Stefanie Redemann, Zahraa Alayan, Benjamin Mercat, Sylvain Pastezeur, Carlos Garzon-Coral, Anthony A Hyman, Jonathon Howard
Precise positioning of the mitotic spindle is important for specifying the plane of cell division, which in turn determines how the cytoplasmic contents of the mother cell are partitioned into the daughter cells, and how the daughters are positioned within the tissue. During metaphase in the early Caenorhabditis elegans embryo, the spindle is aligned and centered on the anterior-posterior axis by a microtubule-dependent machinery that exerts restoring forces when the spindle is displaced from the center. To investigate the accuracy and stability of centering, we tracked the position and orientation of the mitotic spindle during the first cell division with high temporal and spatial resolution...
October 18, 2016: Biophysical Journal
Valerie C Coffman, Matthew B A McDermott, Blerta Shtylla, Adriana T Dawes
Positioning of microtubule organizing centers (MTOCs) incorporates biochemical and mechanical cues for proper alignment of the mitotic spindle and cell division site. Current experimental and theoretical studies in the early C. elegans embryo assume remarkable changes in the origin and polarity of forces acting on the MTOCs. These changes must occur over a few minutes, between initial centration and rotation of the pronuclear complex and entry into mitosis, and the models do not replicate in vivo timing of centration and rotation...
October 12, 2016: Molecular Biology of the Cell
Holly Stevens, Ashley B Williams, W Matthew Michael
To better understand how the cellular response to DNA replication stress is regulated during embryonic development, we and others have established the early C. elegans embryo as a model system to study this important problem. As is the case in most eukaryotic cell types, the replication stress response is controlled by the ATR kinase in early worm embryos. In this report we use RNAi to systematically characterize ATR pathway components for roles in promoting cell cycle delay during a replication stress response, and we find that these genetic requirements vary, depending on the source of stress...
2016: PloS One
Vincent Portegijs, Lars-Eric Fielmich, Matilde Galli, Ruben Schmidt, Javier Muñoz, Tim van Mourik, Anna Akhmanova, Albert J R Heck, Mike Boxem, Sander van den Heuvel
During cell division, the mitotic spindle segregates replicated chromosomes to opposite poles of the cell, while the position of the spindle determines the plane of cleavage. Spindle positioning and chromosome segregation depend on pulling forces on microtubules extending from the centrosomes to the cell cortex. Critical in pulling force generation is the cortical anchoring of cytoplasmic dynein by a conserved ternary complex of Gα, GPR-1/2, and LIN-5 proteins in C. elegans (Gα-LGN-NuMA in mammals). Previously, we showed that the polarity kinase PKC-3 phosphorylates LIN-5 to control spindle positioning in early C...
October 2016: PLoS Genetics
Edlyn Wu, Ajay A Vashisht, Clément Chapat, Mathieu N Flamand, Emiliano Cohen, Mihail Sarov, Yuval Tabach, Nahum Sonenberg, James Wohlschlegel, Thomas F Duchaine
MicroRNAs (miRNAs) impinge on the translation and stability of their target mRNAs, and play key roles in development, homeostasis and disease. The gene regulation mechanisms they instigate are largely mediated through the CCR4-NOT deadenylase complex, but the molecular events that occur on target mRNAs are poorly resolved. We observed a broad convergence of interactions of germ granule and P body mRNP components on AIN-1/GW182 and NTL-1/CNOT1 in Caenorhabditis elegans embryos. We show that the miRISC progressively matures on the target mRNA from a scanning form into an effector mRNP particle by sequentially recruiting the CCR4-NOT complex, decapping and decay, or germ granule proteins...
October 3, 2016: Nucleic Acids Research
Adriana Gonzalez-Sandoval, Susan M Gasser
In eukaryotic organisms, gene regulation occurs in the context of chromatin. In the interphase nucleus, euchromatin and heterochromatin occupy distinct space during cell differentiation, with heterochromatin becoming enriched at the nuclear and nucleolar peripheries. This organization is thought to fine-tune gene expression. To elucidate the mechanisms that govern this level of genome organization, screens were carried out in C. elegans which monitored the loss of heterochromatin sequestration at the nuclear periphery...
2016: Worm
Viktoria Wollrab, David Caballero, Raghavan Thiagarajan, Daniel Riveline
Biological cells are usually observed on flat (2D) surfaces. This condition is not physiological, and phenotypes and shapes are highly variable. Screening based on cells in such environments have therefore serious limitations: cell organelles show extreme phenotypes, cell morphologies and sizes are heterogeneous and/or specific cell organelles cannot be properly visualized. In addition, cells in vivo are located in a 3D environment; in this situation, cells show different phenotypes mainly because of their interaction with the surrounding extracellular matrix of the tissue...
2016: Journal of Visualized Experiments: JoVE
Malgorzata J Liro, Lesilee S Rose
Asymmetric divisions produce daughter cells with different fates, and thus are critical for animal development. During asymmetric divisions, the mitotic spindle must be positioned on a polarized axis to ensure the differential segregation of cell fate determinants into the daughter cells. In many cell types a cortically localized complex consisting of Gα, GPR-1/2, and LIN-5 (Gαi/Pins/Mud, Gαi/LGN/NuMA) mediates the recruitment of dynactin/dynein, which exerts pulling forces on astral microtubules to physically position the spindle...
September 26, 2016: Genetics
Adelita D Mendoza, Teresa K Woodruff, Sarah M Wignall, Thomas V O'Halloran
Zinc is an essential metal that serves as a cofactor in a variety of cellular processes, including meiotic maturation. Cellular control of zinc uptake, availability and efflux is closely linked to meiotic progression in rodent and primate reproduction where large fluctuations in zinc levels are critical at several steps in the oocyte-to-embryo transition. Despite these well-documented roles of zinc fluxes during meiosis, only a few of the genes encoding key zinc receptors, membrane-spanning transporters, and downstream signaling pathway factors have been identified to date...
September 21, 2016: Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP
James Hester, Wendy Hanna-Rose, Francisco Diaz
Zinc is necessary for successful gametogenesis in mammals; however the role of zinc in the gonad function of non-mammalian species has not been investigated. The genetic tractability, short generation time, and hermaphroditic reproduction of the nematode C. elegans offer distinct advantages for the study of impaired gametogenesis as a result of zinc deficiency. However the phenotypic reproductive effects arising from zinc restriction have not been established in this model. We therefore examined the effect of zinc deficiency on C...
September 20, 2016: Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP
Injeong Cho, Gyu Jin Hwang, Jeong Hoon Cho
Uncoupling proteins (UCPs) are mitochondrial inner membrane proteins that function to dissipate proton motive force and mitochondrial membrane potential. One UCP has been identified in Caenorhabditis elegans (C. elegans), namely UCP-4. In this study, we examined its expression and localization using a GFP marker in C. elegans. ucp-4 was expressed throughout the body from early embryo to aged adult and UCP-4 was localized in the mitochondria. It is known that increased mitochondrial membrane protential leads to a reactive oxygen species (ROS) increase, which is associated with age-related diseases, including neurodegenerative diseases in humans...
September 2016: Molecules and Cells
Lu Wang, Fei Xu, Guishuan Wang, Xiaorong Wang, Ajuan Liang, Hefeng Huang, Fei Sun
Reproduction, fat metabolism, and longevity are intertwined regulatory axes; recent studies in C. elegans have provided evidence that these processes are directly coupled. However, the mechanisms by which they are coupled and the reproductive signals modulating fat metabolism and lifespan are poorly understood. Here, we find that an oogenesis-enriched gene, c30f12.4, is specifically expressed and located in germ cells and early embryos; when the gene is knocked out, oogenesis is disrupted and brood size is decreased...
October 2016: Protein & Cell
Daniel G Chawla, Ruchi V Shah, Zachary K Barth, Jessica D Lee, Katherine E Badecker, Anar Naik, Megan M Brewster, Timothy P Salmon, Nina Peel
Microtubule glutamylation is an important modulator of microtubule function and has been implicated in the regulation of centriole stability, neuronal outgrowth and cilia motility. Glutamylation of the microtubules is catalyzed by a family of tubulin tyrosine ligase-like (TTLL) enzymes. Analysis of individual TTLL enzymes has led to an understanding of their specific functions, but how activities of the TTLL enzymes are coordinated to spatially and temporally regulate glutamylation remains relatively unexplored...
September 15, 2016: Biology Open
Zuo Yen Lee, Manoël Prouteau, Monica Gotta, Yves Barral
The one-cell Caenorhabditis elegans embryo is polarized to partition fate determinants between the cell lineages generated during its first division. Using fluorescence loss in photobleaching, we find that the endoplasmic reticulum (ER) of the C. elegans embryo is physically continuous throughout the cell, but its membrane is compartmentalized shortly before nuclear envelope breakdown into an anterior and a posterior domain, indicating that a diffusion barrier forms in the ER membrane between these two domains...
September 12, 2016: Journal of Cell Biology
Shambaditya Saha, Christoph A Weber, Marco Nousch, Omar Adame-Arana, Carsten Hoege, Marco Y Hein, Erin Osborne-Nishimura, Julia Mahamid, Marcus Jahnel, Louise Jawerth, Andrej Pozniakovski, Christian R Eckmann, Frank Jülicher, Anthony A Hyman
P granules are non-membrane-bound RNA-protein compartments that are involved in germline development in C. elegans. They are liquids that condense at one end of the embryo by localized phase separation, driven by gradients of polarity proteins such as the mRNA-binding protein MEX-5. To probe how polarity proteins regulate phase separation, we combined biochemistry and theoretical modeling. We reconstitute P granule-like droplets in vitro using a single protein PGL-3. By combining in vitro reconstitution with measurements of intracellular concentrations, we show that competition between PGL-3 and MEX-5 for mRNA can regulate the formation of PGL-3 droplets...
September 8, 2016: Cell
Oliver Wueseke, David Zwicker, Anne Schwager, Yao Liang Wong, Karen Oegema, Frank Jülicher, Anthony A Hyman, Jeffrey B Woodruff
Centrosomes are major microtubule-organizing centers composed of centrioles surrounded by an extensive proteinacious layer called the pericentriolar material (PCM). In Caenorhabditis elegans embryos, the mitotic PCM expands by Polo-like kinase 1 (PLK-1) phosphorylation-accelerated assembly of SPD-5 molecules into supramolecular scaffolds. However, how PLK-1 phosphorylation regulates SPD-5 assembly is not known. We found that a mutant version of SPD-5 that is insensitive to PLK-1 phosphorylation (SPD-5(4A)) could localize to PCM but was unable to rescue the reduction in PCM size and density when wild-type SPD-5 levels were decreased...
October 15, 2016: Biology Open
Beomseok Seo, Junho Lee
Telomere is a ribonucleoprotein structure that protects chromosomal ends from aberrant fusion and degradation. Telomere length is maintained by telomerase or an alternative pathway, known as alternative lengthening of telomeres (ALT)(1). Recently, C. elegans has emerged as a multicellular model organism for the study of telomere and ALT(2). Visualization of repetitive sequences in the genome is critical in understanding the biology of telomeres. While telomere length can be measured by telomere restriction fragment assay or quantitative PCR, these methods only provide the averaged telomere length...
2016: Journal of Visualized Experiments: JoVE
W Matthew Michael
In early C. elegans embryos the timing of cell division is both invariant and developmentally regulated, yet how the cell cycle is controlled in the embryo and how cell cycle timing impacts early development remain important, unanswered questions. Here, I focus on the cyclin B3 ortholog CYB-3, and show that this cyclin has the unusual property of controlling both the timely progression through S-phase and mitotic entry, suggesting that CYB-3 is both an S-phase-promoting and mitosis-promoting factor. Furthermore, I find that CYB-3 is asymmetrically distributed in the two-cell embryo, such that the somatic precursor AB cell contains ∼2...
September 1, 2016: Development
Gholamreza Fazeli, Michaela Trinkwalder, Linda Irmisch, Ann Marie Wehman
In animals, the midbody coordinates the end of cytokinesis when daughter cells separate through abscission. The midbody was thought to be sequestered by macroautophagy, but recent evidence suggests that midbodies are primarily released and phagocytosed. It was unknown, however, whether autophagy proteins play a role in midbody phagosome degradation. Using a protein degradation assay, we show that midbodies are released in Caenorhabditis elegans Released midbodies are known to be internalized by actin-driven phagocytosis, which we show requires the RAB-5 GTPase to localize the class III phosphoinositide 3-kinase (PI3K) complex at the cortex...
October 15, 2016: Journal of Cell Science
Sophia C Tintori, Erin Osborne Nishimura, Patrick Golden, Jason D Lieb, Bob Goldstein
During embryonic development, cells must establish fates, morphologies, and behaviors in coordination with one another to form a functional body. A prevalent hypothesis for how this coordination is achieved is that each cell's fate and behavior is determined by a defined mixture of RNAs. Only recently has it become possible to measure the full suite of transcripts in a single cell. Here we quantify genome-wide mRNA abundance in each cell of the Caenorhabditis elegans embryo up to the 16-cell stage. We describe spatially dynamic expression, quantify cell-specific differential activation of the zygotic genome, and identify genes that were previously unappreciated as being critical for development...
August 22, 2016: Developmental Cell
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"