Read by QxMD icon Read

Natural scaffold

Andrea Venturato, Gillian MacFarlane, Jin Geng, Mark Bradley
The development of polymeric materials with cell adhesion abilities requires an understanding of cell-surface interactions which vary with cell type. To investigate the correlation between cell attachment and the nature of the polymer, a series of random and block copolymers composed of 2-(dimethylamino)ethyl acrylate and ethyl acrylate are synthesized through single electron transfer living radical polymerization. The polymers are synthesized with highly defined and controlled monomer compositions and exhibited narrow polydispersity indices...
October 25, 2016: Macromolecular Bioscience
Zahra Zarekhalili, S Hajir Bahrami, M Ranjbar-Mohammadi, Peiman Brouki Milan
In this work three dimensional biodegradable nanofiberous scaffolds containing poly(ε-caprolactone) (PCL), poly(vinyl alcohol) (PVA) and gum tragacanth (GT) were successfully fabricated through two nozzles electrospinning process. For this purpose, PVA/GT blend (Blend: B) solution (60:40wt %) was injected from one syringe and poly(ε-caprolactone) solution from the other one. Presence of PVA and PCL in the formulation improved the electrospinning process of GT solution and mechanical properties of the fabricated nanofibers...
October 21, 2016: International Journal of Biological Macromolecules
Jamal Chauhan, Steven Cardinale, Lei Fang, Jing Huang, Steven M Kwasny, M Ross Pennington, Kelly Basi, Robert diTargiani, Benedict R Capacio, Alexander D MacKerell, Timothy J Opperman, Steven Fletcher, Erik P H de Leeuw
Recently we described a novel di-benzene-pyrylium-indolene (BAS00127538) inhibitor of Lipid II. BAS00127538 (1-Methyl-2,4-diphenyl-6-((1E,3E)-3-(1,3,3-trimethylindolin-2-ylidene)prop-1-en-1-yl)pyryl-1-ium) tetrafluoroborate is the first small molecule Lipid II inhibitor and is structurally distinct from natural agents that bind Lipid II, such as vancomycin. Here, we describe the synthesis and biological evaluation of 50 new analogs of BAS00127538 designed to explore the structure-activity relationships of the scaffold...
2016: PloS One
Zhe Wang, Fuwu Zhang, Zhantong Wang, Xiao Fu, Albert Jin, Bryant C Yung, Jing Fan, Xiangyu Yang, Gang Niu, Xiaoyuan Chen
Molecular design of biomaterials with unique features reca-pitulating nature's niche to influence biological activities has been a prolific area of investigation in chemistry and material science. The extracellular matrix (ECM) provides a wealth of bioactive molecules in supporting cell proliferation, migra-tion and differentiation. The well-patterned fibril and inter-twining architecture of the ECM profoundly influences cell behavior and development. Inspired by those features from the ECM, we attempted to integrate essential biological fac-tors from the ECM to design bioactive molecules to construct artificial self-supportive ECM mimics to advance stem cell culture...
October 24, 2016: Journal of the American Chemical Society
Andreas Gollner, Dorothea Rudolph, Heribert Arnhof, Markus Bauer, Sophia Maria Blake, Guido Boehmelt, Xiao-Ling Cockcroft, Georg Dahmann, Peter Ettmayer, Thomas Gerstberger, Jale Karolyi-Oezguer, Dirk Kessler, Christiane Kofink, Juergen Ramharter, Jörg Rinnenthal, Alexander Savchenko, Renate Schnitzer, Harald Weinstabl, Ulrike Weyer-Czernilofsky, Tobias Wunberg, Darryl B McConnell
Scaffold modification based on Wang´s pioneering MDM2-p53 inhibitors led to novel, chemically stable spiro-oxindole compounds bearing a spiro[3H-indole-3,2´-pyrrolidin]-2(1H)-one scaffold that are not prone to epimerization as observed for the initial spiro[3H-indole-3,3´-pyrrolidin]-2(1H)-one scaffold. Further structure based optimization inspired by natural product architectures led to a complex fused ring system ideally suited to bind to the MDM2 protein and to interrupt its protein-protein interaction (PPI) with TP53...
October 24, 2016: Journal of Medicinal Chemistry
Christine Radtke
Spider silk and its synthetic derivatives have a light weight in combination with good strength and elasticity. Their high cytocompatibility and low immunogenicity make them well suited for biomaterial products such as nerve conduits. Silk proteins slowly degrade enzymatically in vivo, thus allowing for an initial therapeutic effect such as in nerve scaffolding to facilitate endogenous repair processes, and then are removed. Silks are biopolymers naturally produced by many species of arthropods including spiders, caterpillars and mites...
October 20, 2016: International Journal of Molecular Sciences
Claudia Melis, Rita Meleddu, Andrea Angeli, Simona Distinto, Giulia Bianco, Clemente Capasso, Filippo Cottiglia, Rossella Angius, Claudiu T Supuran, Elias Maccioni
The isatin scaffold is the constitutive fragment of several natural and synthetic bioactive molecules. Albeit several benzene sulphonamide-based carbonic anhydrase inhibitors (CAIs) have been reported, only recently isatin benzene sulphonamides have been studied and proposed as CAIs. In this study we have designed, synthesised, and evaluated the biological activity of a series of differently substituted isatin-based benzene sulphonamides which have been designed for the inhibition of carbonic anhydrase isoforms...
October 24, 2016: Journal of Enzyme Inhibition and Medicinal Chemistry
Niloofar Eslahi, Marjan Abdorahim, Abdolreza Arash Simchi
Stimuli responsive hydrogels (SRHs) are attractive bio-scaffolds for tissue engineering. The structural similarity of SRHs to the extracellular matrix (ECM) of many tissues offers great advantages for a minimally invasive tissue repair. Among various potential applications of SRHs, cartilage regeneration has attracted significant attention. The repair of cartilage damage is challenging in orthopedics owing to its low repair capacity. Recent advances include development of injectable hydrogels to minimize invasive surgery with nanostructured features and rapid stimuli-responsive characteristics...
October 24, 2016: Biomacromolecules
Keiichi Mochida, Tetsuya Sakurai, Hikaru Seki, Takuhiro Yoshida, Kotaro Takahagi, Satoru Sawai, Hiroshi Uchiyama, Toshiya Muranaka, Kazuki Saito
Chinese liquorice/licorice (Glycyrrhiza uralensis) is a leguminous plant species whose roots and rhizomes have been widely used as a herbal medicine and natural sweetener. Whole-genome sequencing is essential for gene discovery studies and molecular breeding in liquorice. Here, we report a draft assembly of the approximately 379-Mb whole-genome sequence of strain 308-19 of G. uralensis; this assembly contains 34 445 predicted protein-coding genes. Comparative analyses suggested well-conserved genomic components and collinearity of gene loci (synteny) between the genome of liquorice and those of other legumes such as Medicago and chickpea...
October 24, 2016: Plant Journal: for Cell and Molecular Biology
Matthew Osmond, Sarah M Bernier, Mina B Pantcheva, Melissa D Krebs
Glaucoma is a disease in which damage to the optic nerve leads to progressive, irreversible vision loss. The intraocular pressure (IOP) is the only modifiable risk factor for glaucoma and its lowering is considered a useful strategy for preventing or slowing down the progression of glaucomatous neuropathy. Elevated intraocular pressure associated with glaucoma is due to increased aqueous humor outflow resistance, primarily through the trabecular meshwork (TM) of the eye. Current in vitro models of the trabecular meshwork are oversimplified and do not capture the organized and complex three-dimensional nature of this tissue that consists primarily of collagen and glycoasaminoglycans...
October 24, 2016: Biotechnology and Bioengineering
S Thönes, L M Kutz, S Oehmichen, J Becher, K Heymann, A Saalbach, W Knolle, M Schnabelrauch, S Reichelt, U Anderegg
Cryogels made of components of natural extracellular matrix components are potent biomaterials for bioengineering and regenerative medicine. Human dermal fibroblasts are key cells for tissue replacement during wound healing. Thus, any biomaterial for wound healing applications should enable growth, differentiation and matrix synthesis by these cells. Cryogels are highly porous scaffolds consisting of a network of interconnected pores. Here, we used a novel group of cryogels generated from acrylated hyaluronan where the polymerization was initiated by accelerated electrons (E-beam)...
October 20, 2016: International Journal of Biological Macromolecules
Fuben Xu, Kun Zhang, Peizhen Lv, Rongbin Lu, Li Zheng, Jinmin Zhao
Restoration of normal neurological function of transected peripheral nerve challenged regenerative medicine and surgery. Previous studies showed that Nectin-like molecule 1 (NECL1) is one of the important adhesion molecules on the axons and Schwann cells is located along the internodes in direct apposition to NECL1. In this study, we fabricated PLGA membrane pre-coated with NECL1, mimicking the natural axons to enhance the adhesion of Schwann cells. Investigation of the cellular response in vitro was performed by detecting cytotoxicity, proliferation, morphology, viability, specific markers and Scanning Electron Microscopy (SEM) of Schwann cells cultured in PLGA...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Y Ke, X Y Zhang, S Ramakrishna, L M He, G Wu
Polyhydroxyalkanoates (PHAs) are a class of natural polyesters as carbon and energy reserves by >300 species of microorganisms. They are fully biodegradable, biocompatible and piezoelectric biopolymers that have attracted much attention recently as the biomaterial of choice for medical applications. However, the toughness, processability and hydrophilicity of PHAs need to tune to expand their applications as tissue engineering scaffolds or drug delivery systems. Reactive polymer blending is one of the most economic and versatile way to produce materials combining the desired properties via forming the compatibilizing agents in situ or inducing the chemico-physical interactions between polymer blends...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
V G Grigorenko, I P Andreeva, M Yu Rubtsova, I M Deygen, R L Antipin, A G Majouga, A M Egorov, D A Beshnova, J Kallio, C Hackenberg, V S Lamzin
The microbial resistance to antibiotics is a genuine global threat. Consequently, a search of new inhibitors remains of acute importance due to the increasing spread of multidrug resistance. Here we present a new type of non-β-lactam β-lactamase inhibitor PA-34 based on natural phenoxyaniline, identified using computer-assisted screening of scaffolds related to those of known low-affinity inhibitors. The compound displays reversible competitive inhibition of bacterial β-lactamase TEM-171, with a Ki of 88 μM...
October 19, 2016: Biochimie
Bubun Banerjee
Mother Nature needs to be protected from ever increasing chemical pollutions associated with synthetic organic processes. The fundamental challenge for today's methodologists is to make their protocols more environmentally benign and sustainable by avoiding the extensive use of hazardous reagents and solvents, harsh reaction conditions, and toxic metal catalysts. However, the people of the twenty-first century are well aware about the side effects of those hazardous substances used and generated by the chemical processes...
September 28, 2016: Ultrasonics Sonochemistry
Howa Begam, Samit Kumar Nandi, Biswanath Kundu, Abhijit Chanda
Bone morphogenetic proteins (BMPs) are the most significant growth factors that belong to the Transforming Growth Factor Beta (TGF-β) super-family. Though more than twenty members of this family have been identified so far in humans, Food and Drug Administration (FDA) approved two growth factors: BMP-2 and BMP-7 for treatments of spinal fusion and long-bone fractures with collagen carriers. Currently BMPs are clinically used in spinal fusion, oral and maxillofacial surgery and also in the repair of long bone defects...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Rita Langasco, Barbara Cadeddu, Marilena Formato, Antonio Junior Lepedda, Massimo Cossu, Paolo Giunchedi, Roberto Pronzato, Giovanna Rassu, Renata Manconi, Elisabetta Gavini
The growing interest in the use of recyclable and biodegradable natural materials has become a relevant topic in pharmaceutics. In this work, we suggest the use and valorization of natural horny skeleton of marine sponges (Porifera, Dictyoceratida) as bio-based dressing for topical drug delivery. Biomaterial characterization focusing on morpho-functional traits, swelling behavior, fluid uptake performances, glycosaminoglycans content and composition and microbiological quality assessment was carried out to investigate the collagenic skeleton properties...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Gyeung Mi Seon, Mi Hee Lee, Byeong-Ju Kwon, Min Sung Kim, Min-Ah Koo, Dohyun Kim, Young Seomun, Jong-Tak Kim, Jong-Chul Park
: Although a number of natural materials have been used as hemostatic agents, many substances do not act quickly enough. Here, we created a novel dressings using collagen and chitosan with recombinant batroxobin (r-Bat) to promote faster and more effective hemostasis. We hypothesized that r-Bat would promote synergetic blood coagulation because it contains a blood coagulation active site different than those of collagen and chitosan. Our results suggest that each substances can maintain hemostatic properties while in the mixed dressings and that our novel hemostatic dressings promotes potent control of bleeding, as demonstrated by a whole blood assay and rat hemorrhage model...
October 18, 2016: Acta Biomaterialia
Sridhar Sanyasi, Satish Kumar, Arijit Ghosh, Rakesh Kumar Majhi, Navneet Kaur, Priyanka Choudhury, Udai P Singh, Chandan Goswami, Luna Goswami
Bone related problems are increasing as a consequence of increased life expectancy, disorders in life style, and other medical conditions enforcing the need for functional bones prepared in vitro at affordable cost. Lack of suitable surface which promotes growth of both osteogenic and nonosteogenic cells is a major limitation. Here a novel biomaterial is reported that is synthesized from natural polysaccharide, namely, tamarind kernel polysaccharide (TKP), which is grafted with hydrophilic acrylic acid (AA) by radical polymerization...
October 21, 2016: Macromolecular Bioscience
Ji-Hee Ha, Jung-Eun Kim, Yong-Sung Kim
The monospecific and bivalent characteristics of naturally occurring immunoglobulin G (IgG) antibodies depend on homodimerization of the fragment crystallizable (Fc) regions of two identical heavy chains (HCs) and the subsequent assembly of two identical light chains (LCs) via disulfide linkages between each HC and LC. Immunoglobulin Fc heterodimers have been engineered through modifications to the CH3 domain interface, with different mutations on each domain such that the engineered Fc fragments, carrying the CH3 variant pair, preferentially form heterodimers rather than homodimers...
2016: Frontiers in Immunology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"