keyword
MENU ▼
Read by QxMD icon Read
search

Genome Editing human

keyword
https://www.readbyqxmd.com/read/28534256/crispr-cas9-mediated-correction-of-human-genetic-disease
#1
REVIEW
Ke Men, Xingmei Duan, Zhiyao He, Yang Yang, Shaohua Yao, Yuquan Wei
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) protein 9 system (CRISPR/Cas9) provides a powerful tool for targeted genetic editing. Directed by programmable sequence-specific RNAs, this system introduces cleavage and double-stranded breaks at target sites precisely. Compared to previously developed targeted nucleases, the CRISPR/Cas9 system demonstrates several promising advantages, including simplicity, high specificity, and efficiency. Several broad genome-editing studies with the CRISPR/Cas9 system in different species in vivo and ex vivo have indicated its strong potential, raising hopes for therapeutic genome editing in clinical settings...
May 3, 2017: Science China. Life Sciences
https://www.readbyqxmd.com/read/28533980/mitochondrial-complex-i-deficiency-leads-to-the-retardation-of-early-embryonic-development-in-ndufs4-knockout-mice
#2
Mei Wang, Ya-Ping Huang, Han Wu, Ke Song, Cong Wan, A-Ni Chi, Ya-Mei Xiao, Xiao-Yang Zhao
BACKGROUND: The NDUFS4 gene encodes an 18-kD subunit of mitochondria complex I, and mutations in this gene lead to the development of a severe neurodegenerative disease called Leigh syndrome (LS) in humans. To investigate the disease phenotypes and molecular mechanisms of Leigh syndrome, the Ndufs4 knockout (KO) mouse has been widely used as a novel animal model. Because the homozygotes cannot survive beyond child-bearing age, whether Ndufs4 and mitochondrial complex I influence early embryonic development remains unknown...
2017: PeerJ
https://www.readbyqxmd.com/read/28533524/enhancing-the-genome-editing-toolbox-genome-wide-crispr-arrayed-libraries
#3
Emmanouil Metzakopian, Alex Strong, Vivek Iyer, Alex Hodgkins, Konstantinos Tzelepis, Liliana Antunes, Mathias J Friedrich, Qiaohua Kang, Teresa Davidson, Jacob Lamberth, Christina Hoffmann, Gregory D Davis, George S Vassiliou, William C Skarnes, Allan Bradley
CRISPR-Cas9 technology has accelerated biological research becoming routine for many laboratories. It is rapidly replacing conventional gene editing techniques and has high utility for both genome-wide and gene-focussed applications. Here we present the first individually cloned CRISPR-Cas9 genome wide arrayed sgRNA libraries covering 17,166 human and 20,430 mouse genes at a complexity of 34,332 sgRNAs for human and 40,860 sgRNAs for the mouse genome. For flexibility in generating stable cell lines the sgRNAs have been cloned in a lentivirus backbone containing PiggyBac transposase recognition elements together with fluorescent and drug selection markers...
May 22, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28533408/rna-editing-of-slc22a3-drives-early-tumor-invasion-and-metastasis-in-familial-esophageal-cancer
#4
Li Fu, Yan-Ru Qin, Xiao-Yan Ming, Xian-Bo Zuo, Yu-Wen Diao, Li-Yi Zhang, Jiaoyu Ai, Bei-Lei Liu, Tu-Xiong Huang, Ting-Ting Cao, Bin-Bin Tan, Di Xiang, Chui-Mian Zeng, Jing Gong, Qiangfeng Zhang, Sui-Sui Dong, Juan Chen, Haibo Liu, Jian-Lin Wu, Robert Z Qi, Dan Xie, Li-Dong Wang, Xin-Yuan Guan
Like many complex human diseases, esophageal squamous cell carcinoma (ESCC) is known to cluster in families. Familial ESCC cases often show early onset and worse prognosis than the sporadic cases. However, the molecular genetic basis underlying the development of familial ESCC is mostly unknown. We reported that SLC22A3 is significantly down-regulated in nontumor esophageal tissues from patients with familial ESCC compared with tissues from patients with sporadic ESCCs. A-to-I RNA editing of the SLC22A3 gene results in its reduced expression in the nontumor esophageal tissues of familial ESCCs and is significantly correlated with lymph node metastasis...
May 22, 2017: Proceedings of the National Academy of Sciences of the United States of America
https://www.readbyqxmd.com/read/28530678/the-complex-genetics-of-hypoplastic-left-heart-syndrome
#5
Xiaoqin Liu, Hisato Yagi, Shazina Saeed, Abha S Bais, George C Gabriel, Zhaohan Chen, Kevin A Peterson, You Li, Molly C Schwartz, William T Reynolds, Manush Saydmohammed, Brian Gibbs, Yijen Wu, William Devine, Bishwanath Chatterjee, Nikolai T Klena, Dennis Kostka, Karen L de Mesy Bentley, Madhavi K Ganapathiraju, Phillip Dexheimer, Linda Leatherbury, Omar Khalifa, Anchit Bhagat, Maliha Zahid, William Pu, Simon Watkins, Paul Grossfeld, Stephen A Murray, George A Porter, Michael Tsang, Lisa J Martin, D Woodrow Benson, Bruce J Aronow, Cecilia W Lo
Congenital heart disease (CHD) affects up to 1% of live births. Although a genetic etiology is indicated by an increased recurrence risk, sporadic occurrence suggests that CHD genetics is complex. Here, we show that hypoplastic left heart syndrome (HLHS), a severe CHD, is multigenic and genetically heterogeneous. Using mouse forward genetics, we report what is, to our knowledge, the first isolation of HLHS mutant mice and identification of genes causing HLHS. Mutations from seven HLHS mouse lines showed multigenic enrichment in ten human chromosome regions linked to HLHS...
May 22, 2017: Nature Genetics
https://www.readbyqxmd.com/read/28530655/a-quantitative-and-multiplexed-approach-to-uncover-the-fitness-landscape-of-tumor-suppression-in-vivo
#6
Zoë N Rogers, Christopher D McFarland, Ian P Winters, Santiago Naranjo, Chen-Hua Chuang, Dmitri Petrov, Monte M Winslow
Cancer growth is a multistage, stochastic evolutionary process. While cancer genome sequencing has been instrumental in identifying the genomic alterations that occur in human tumors, the consequences of these alterations on tumor growth remain largely unexplored. Conventional genetically engineered mouse models enable the study of tumor growth in vivo, but they are neither readily scalable nor sufficiently quantitative to unravel the magnitude and mode of action of many tumor-suppressor genes. Here, we present a method that integrates tumor barcoding with ultradeep barcode sequencing (Tuba-seq) to interrogate tumor-suppressor function in mouse models of human cancer...
May 22, 2017: Nature Methods
https://www.readbyqxmd.com/read/28530652/cd34-cells-from-dental-pulp-stem-cells-with-a-zfn-mediated-and-homology-driven-repair-mediated-locus-specific-knock-in-of-an-artificial-%C3%AE-globin-gene
#7
S Chattong, O Ruangwattanasuk, W Yindeedej, A Setpakdee, K Manotham
In humans, mutations in the β-globin gene (HBB) have two important clinical manifestations: β-thalassemia and sickle cell disease. The progress in genome editing and stem cell research may be relevant to the treatment of β-globin-related diseases. In this work, we employed zinc finger nuclease (ZFN)-mediated gene integration of synthetic β-globin cDNA into HBB loci, thus correcting almost all β-globin mutations. The integration was achieved in both HEK 293 cells and isolated dental pulp stem cell (DPSCs)...
May 22, 2017: Gene Therapy
https://www.readbyqxmd.com/read/28530648/mechanism-of-human-somatic-reprogramming-to-ips-cell
#8
Rika Teshigawara, Junkwon Cho, Masahiro Kameda, Takashi Tada
Somatic reprogramming to induced pluripotent stem cells (iPSC) was realized in the year 2006 in mice, and in 2007 in humans, by transiently forced expression of a combination of exogenous transcription factors. Human and mouse iPSCs are distinctly reprogrammed into a 'primed' and a 'naïve' state, respectively. In the last decade, puzzle pieces of somatic reprogramming have been collected with difficulty. Collectively, dissecting reprogramming events and identification of the hallmark of sequentially activated/silenced genes have revealed mouse somatic reprogramming in fragments, but there is a long way to go toward understanding the molecular mechanisms of human somatic reprogramming, even with developing technologies...
May 22, 2017: Laboratory Investigation; a Journal of Technical Methods and Pathology
https://www.readbyqxmd.com/read/28529161/genome-editing-for-human-osteoarthritis-a-perspective
#9
EDITORIAL
D Almarza, M Cucchiarini, J Loughlin
No abstract text is available yet for this article.
May 18, 2017: Osteoarthritis and Cartilage
https://www.readbyqxmd.com/read/28527664/a-new-hdv-mouse-model-identifies-mitochondrial-antiviral-signaling-protein-mavs-as-a-key-player-in-ifn-%C3%AE-induction
#10
Lester Suárez-Amarán, Carla Usai, Marianna Di Scala, Cristina Godoy, Yi Ni, Mirja Hommel, Laura Palomo, Víctor Segura, Cristina Olagüe, Africa Vales, Alicia Ruiz-Ripa, Maria Buti, Eduardo Salido, Jesús Prieto, Stephan Urban, Francisco Rodríguez-Frias, Rafael Aldabe, Gloria González-Aseguinolaza
BACKGROUND & AIMS: Studying hepatitis delta virus (HDV) and developing new treatments is hampered by the limited availability of small animal models. Here a description of a robust mouse model of HDV infection that mimics several important characteristics of the human disease is presented. METHODS: HDV- and HBV-replication competent genomes were delivered to the mouse liver using adeno-associated viruses (AAV) (AAV-HDV and AAV-HBV). Viral load, antigen expression and genomes were quantified at different time points after AAV injection...
May 17, 2017: Journal of Hepatology
https://www.readbyqxmd.com/read/28527117/non-viral-and-viral-delivery-systems-for-crispr-cas9-technology-in-the-biomedical-field
#11
REVIEW
Zhi-Yao He, Ke Men, Zhou Qin, Yang Yang, Ting Xu, Yu-Quan Wei
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) system provides a novel genome editing technology that can precisely target a genomic site to disrupt or repair a specific gene. Some CRISPR-Cas9 systems from different bacteria or artificial variants have been discovered or constructed by biologists, and Cas9 nucleases and single guide RNAs (sgRNA) are the major components of the CRISPR-Cas9 system. These Cas9 systems have been extensively applied for identifying therapeutic targets, identifying gene functions, generating animal models, and developing gene therapies...
May 2, 2017: Science China. Life Sciences
https://www.readbyqxmd.com/read/28525578/cell-type-specific-genome-editing-with-a-microrna-responsive-crispr-cas9-switch
#12
Moe Hirosawa, Yoshihiko Fujita, Callum J C Parr, Karin Hayashi, Shunnichi Kashida, Akitsu Hotta, Knut Woltjen, Hirohide Saito
The CRISPR-Cas9 system is a powerful genome-editing tool useful in a variety of biotechnology and biomedical applications. Here we developed a synthetic RNA-based, microRNA (miRNA)-responsive CRISPR-Cas9 system (miR-Cas9 switch) in which the genome editing activity of Cas9 can be modulated through endogenous miRNA signatures in mammalian cells. We created miR-Cas9 switches by using a miRNA-complementary sequence in the 5΄-UTR of mRNA encoding Streptococcus pyogenes Cas9. The miR-21-Cas9 or miR-302-Cas9 switches selectively and efficiently responded to miR-21-5p in HeLa cells or miR-302a-5p in human induced pluripotent stem cells, and post-transcriptionally attenuated the Cas9 activity only in the target cells...
May 19, 2017: Nucleic Acids Research
https://www.readbyqxmd.com/read/28523359/arginine-cga-codons-as-a-source-of-nonsense-mutations-a-possible-role-in-multivariant-gene-expression-control-of-mrna-quality-and-aging
#13
Georgy A Romanov, Victor S Sukhoverov
Methylation of cytosine residues in DNA of higher eukaryotes, including humans, creates "hot spots" of C→T transitions in the genome. The predominantly methylated sequence in mammalian DNAs is CG (CpG). Among CG-containing codons, CGA codons for arginine are unique due to their ability to create stop codons TGA (UGA in mRNA) upon epigenetic-mediated mutation. As such nonsense mutations can have a strong adverse effect on the cell and organism, we have performed a study, on the example of human genes, aimed to characterise the anticipated effects of epigenetic-mediated nonsense mutations CGA→TGA in somatic cells...
May 18, 2017: Molecular Genetics and Genomics: MGG
https://www.readbyqxmd.com/read/28522548/a-multi-purpose-toolkit-to-enable-advanced-genome-engineering-in-plants
#14
Tomas Cermak, Shaun J Curtin, Javier Gil-Humanes, Radim Čegan, Thomas J Y Kono, Eva Konečná, Joseph J Belanto, Colby G Starker, Jade W Mathre, Rebecca L Greenstein, Daniel F Voytas
We report a comprehensive toolkit that enables targeted, specific modification of monocot and dicot genomes using a variety of genome engineering approaches. Our reagents, based on TALENs and the CRISPR/Cas9 system, are systematized for fast, modular cloning and accommodate diverse regulatory sequences to drive reagent expression. Vectors are optimized to create either single or multiple gene knockouts and large chromosomal deletions. Moreover, integration of geminivirus-based vectors enables precise gene editing through homologous recombination...
May 18, 2017: Plant Cell
https://www.readbyqxmd.com/read/28522326/gene-editing-and-clonal-isolation-of-human-induced-pluripotent-stem-cells-using-crispr-cas9
#15
Saniye Yumlu, Jürgen Stumm, Sanum Bashir, Anne-Kathrin Dreyer, Pawel Lisowski, Eric Danner, Ralf Kühn
Human induced pluripotent stem cells (hiPSCs) represent an ideal in vitro platform to study human genetics and biology. The recent advent of programmable nucleases makes also the human genome amenable to experimental genetics through either the correction of mutations in patient-derived iPSC lines or the de novo introduction of mutations into otherwise healthy iPSCs. The production of specific and sometimes complex genotypes in multiple cell lines requires efficient and streamlined gene editing technologies...
May 15, 2017: Methods: a Companion to Methods in Enzymology
https://www.readbyqxmd.com/read/28522325/generation-of-chromosomal-translocations-that-lead-to-conditional-fusion-protein-expression-using-crispr-cas9-and-homology-directed-repair
#16
Fabio Vanoli, Maria Jasin
Recurrent chromosomal translocations often lead to expression of fusion proteins associated with oncogenic transformation. To study translocations and downstream events, genome editing techniques have been developed to generate chromosomal translocations through non-homologous end joining of DNA double-strand breaks introduced at the two participating endogenous loci. However, the frequencies at which these events occur is usually too low to efficiently clone cells carrying the translocation. This article provides a detailed method using CRISPR-Cas9 technology and homology-directed repair to efficiently isolate cells harboring a chromosomal translocation...
May 15, 2017: Methods: a Companion to Methods in Enzymology
https://www.readbyqxmd.com/read/28522157/antiviral-goes-viral-harnessing-crispr-cas9-to-combat-viruses-in-humans
#17
REVIEW
Jasper Adriaan Soppe, Robert Jan Lebbink
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems are RNA-guided sequence-specific prokaryotic antiviral immune systems. In prokaryotes, small RNA molecules guide Cas effector endonucleases to invading foreign genetic elements in a sequence-dependent manner, resulting in DNA cleavage by the endonuclease upon target binding. A rewired CRISPR/Cas9 system can be used for targeted and precise genome editing in eukaryotic cells. CRISPR/Cas has also been harnessed to target human pathogenic viruses as a potential new antiviral strategy...
May 15, 2017: Trends in Microbiology
https://www.readbyqxmd.com/read/28513735/highly-efficient-genome-editing-of-human-hematopoietic-stem-cells-via-a-nano-silicon-blade-delivery-approach
#18
Yuan Ma, Xin Han, Oscar Quintana Bustamante, Ricardo Bessa de Castro, Kai Zhang, Pengchao Zhang, Ying Li, Zongbin Liu, Xuewu Liu, Mauro Ferrari, Zhongbo Hu, José Carlos Segovia, Lidong Qin
Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 bacterial immunity system has opened a promising avenue to treat genetic diseases that affect the human hematopoietic stem cells (HSCs). Therefore, finding a highly efficient delivery method capable of modifying the genome in the hard-to-transfect HSCs, combined with the advanced CRISPR-Cas9 system, may meet the challenges for dissecting the hematologic disease mechanisms and facilitate future clinical applications. Here, we developed an effective HSC-specified delivery microfluidic chip to disrupt the cell membrane transiently by inducing rapid mechanical deformation that allowed the delivery of biomaterials into the cytoplasm from the surrounding matrix...
May 17, 2017: Integrative Biology: Quantitative Biosciences From Nano to Macro
https://www.readbyqxmd.com/read/28509669/genetic-advances-in-systemic-lupus-erythematosus-an-update
#19
Lingyan Chen, David L Morris, Timothy J Vyse
PURPOSE OF REVIEW: More than 80 susceptibility loci are now reported to show robust genetic association with systemic lupus erythematosus (SLE). The differential functional effects of the risk alleles for the majority of these loci remain to be defined. Here, we review current SLE association findings and the recent progress in the annotation of noncoding regions of the human genome as well as the new technologies and statistical methods that can be applied to further the understanding of SLE genetics...
May 15, 2017: Current Opinion in Rheumatology
https://www.readbyqxmd.com/read/28508226/erratum-to-introducing-precise-genetic-modifications-into-human-3pn-embryos-by-crispr-cas-mediated-genome-editing
#20
Xiangjin Kang, Wenyin He, Yuling Huang, Qian Yu, Yaoyong Chen, Xingcheng Gao, Xiaofang Sun, Yong Fan
No abstract text is available yet for this article.
May 15, 2017: Journal of Assisted Reproduction and Genetics
keyword
keyword
73661
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"