Read by QxMD icon Read

Rosetta protein

Sergey Ovchinnikov, Hahnbeom Park, Neha Varghese, Po-Ssu Huang, Georgios A Pavlopoulos, David E Kim, Hetunandan Kamisetty, Nikos C Kyrpides, David Baker
Despite decades of work by structural biologists, there are still ~5200 protein families with unknown structure outside the range of comparative modeling. We show that Rosetta structure prediction guided by residue-residue contacts inferred from evolutionary information can accurately model proteins that belong to large families and that metagenome sequence data more than triple the number of protein families with sufficient sequences for accurate modeling. We then integrate metagenome data, contact-based structure matching, and Rosetta structure calculations to generate models for 614 protein families with currently unknown structures; 206 are membrane proteins and 137 have folds not represented in the Protein Data Bank...
January 20, 2017: Science
Joseph W Parks, Kalli Kappel, Rhiju Das, Michael D Stone
Maintenance of telomeres by telomerase permits continuous proliferation of rapidly dividing cells, including the majority of human cancers. Despite its direct biomedical significance, the architecture of the human telomerase complex remains unknown. Generating homogeneous telomerase samples has presented a significant barrier to developing improved structural models. Here we pair single-molecule Förster resonance energy transfer (smFRET) measurements with Rosetta modeling to map the conformations of the essential telomerase RNA core domain within the active ribonucleoprotein...
February 2017: RNA
Ivan Campeotto, Adi Goldenzweig, Jack Davey, Lea Barfod, Jennifer M Marshall, Sarah E Silk, Katherine E Wright, Simon J Draper, Matthew K Higgins, Sarel J Fleishman
Many promising vaccine candidates from pathogenic viruses, bacteria, and parasites are unstable and cannot be produced cheaply for clinical use. For instance, Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is essential for erythrocyte invasion, is highly conserved among field isolates, and elicits antibodies that neutralize in vitro and protect in an animal model, making it a leading malaria vaccine candidate. However, functional RH5 is only expressible in eukaryotic systems and exhibits moderate temperature tolerance, limiting its usefulness in hot and low-income countries where malaria prevails...
January 17, 2017: Proceedings of the National Academy of Sciences of the United States of America
Débora Maria Abrantes Costa, Mariana Amalia Figueiredo Costa, Samuel Leite Guimarães, Juliana Barbosa Coitinho, Stefanya Velásquez Gómez, Tiago Antônio da Silva Brandão, Ronaldo Alves Pinto Nagem
The second enzyme of the naphthalene degradation pathway in Pseudomonas putida G7 is NahB, a dehydrogenase that converts cis-1,2-dihydroxy-1,2-dihydronaphthalene to 1,2-dihydroxynaphthalene. We report the cloning, optimization of expression, purification, kinetic studies and preliminary structural characterization of the recombinant NahB. The nahB gene was cloned into a T7 expression vector and the enzyme was overexpressed in Escherichia coli Rosetta (DE3) as an N-terminal hexa-histidine-tagged protein (6xHis-NahB)...
January 9, 2017: Protein Expression and Purification
David Simoncini, Thomas Schiex, Kam Y J Zhang
Conformational search space exploration remains a major bottleneck for protein structure prediction methods. Population-based meta-heuristics typically enable the possibility to control the search dynamics and to tune the balance between local energy minimization and search space exploration. EdaFold is a fragment-based approach that can guide search by periodically updating the probability distribution over the fragment libraries used during model assembly. We implement the EdaFold algorithm as a Rosetta protocol and provide two different probability update policies: a cluster-based variation (EdaRosec ) and an energy-based one (EdaRoseen ) We analyze the search dynamics of our new Rosetta protocols and show that EdaRosec EdaRosec is able to provide predictions with lower Cα RMSD to the native structure than EdaRoseen and Rosetta AbInitio Relax protocol...
January 9, 2017: Proteins
Lemuel M J Soh, Wai Shun Mak, Paul P Lin, Luo Mi, Frederic Y-H Chen, Robert Damoiseaux, Justin B Siegel, James C Liao
Keto acid decarboxylase (Kdc) is a key enzyme in producing keto acid derived higher alcohols, like isobutanol. The most active Kdc's are found in mesophiles; the only reported Kdc activity in thermophiles is 2 orders of magnitude less active. Therefore, the thermostability of mesophilic Kdc limits isobutanol production temperature. Here, we report development of a thermostable 2-ketoisovalerate decarboxylase (Kivd) with 10.5-fold increased residual activity after 1h preincubation at 60 °C. Starting with mesophilic Lactococcus lactis Kivd, a library was generated using random mutagenesis and approximately 8,000 independent variants were screened...
January 11, 2017: ACS Synthetic Biology
Sebastian Rämisch, Anna Pramhed, Viveka Tillgren, Anders Aspberg, Derek T Logan
Chondroadherin (CHAD) is a cartilage matrix protein that mediates the adhesion of isolated chondrocytes. Its protein core is composed of 11 leucine-rich repeats (LRR) flanked by cysteine-rich domains. CHAD makes important interactions with collagen as well as with cell-surface heparin sulfate proteoglycans and α2β1 integrins. The integrin-binding site is located in a region of hitherto unknown structure at the C-terminal end of CHAD. Peptides based on the C-terminal human CHAD (hCHAD) sequence have shown therapeutic potential for treating osteoporosis...
January 1, 2017: Acta Crystallographica. Section D, Structural Biology
Julia Koehler Leman, Benjamin K Mueller, Jeffrey J Gray
MOTIVATION: A range of membrane protein modeling tools has been developed in the past 5-10 years, yet few of these tools are integrated and make use of existing functionality for soluble proteins. To extend existing methods in the Rosetta biomolecular modeling suite for membrane proteins, we recently implemented RosettaMP, a general framework for membrane protein modeling. While RosettaMP facilitates implementation of new methods, addressing real-world biological problems also requires a set of accessory tools that are used to carry out standard modeling tasks...
December 22, 2016: Bioinformatics
Orly Marcu, Emma-Joy Dodson, Nawsad Alam, Michal Sperber, Dima Kozakov, Marc F Lensink, Ora Schueler-Furman
CAPRI rounds 28 and 29 included, for the first time, peptide-receptor targets of three different systems, reflecting increased appreciation of the importance of peptide-protein interactions. The CAPRI rounds allowed us to objectively assess the performance of Rosetta FlexPepDock, one of the first protocols to explicitly include peptide flexibility in docking, accounting for peptide conformational changes upon binding. We discuss here successes and challenges in modeling these targets: we obtain top-performing, high-resolution models of the peptide motif for cases with known binding sites but there is a need for better modeling of flanking regions, as well as better selection criteria, in particular for unknown binding sites...
December 21, 2016: Proteins
Jad Abbass, Jean-Christophe Nebel
Protein structure prediction is still considered a main challenge in computational biology. The biannual international competition, Critical Assessment of protein Structure Prediction (CASP), has shown in its eleventh version that free modelling targets' predictions are still beyond reliable accuracy, therefore, much efforts should be done for ab initio methods. Arguably, Rosetta is considered as the most competitive method when it comes to targets with no homologues. Relying on fragments of length 9 and 3 from known structures, Rosetta creates putative structures by assembling candidate fragments...
December 16, 2016: Protein and Peptide Letters
Xuelian Yu, Jiaqi Sun, Weiyu Wang, Li Jiang, Beijiu Cheng, Jun Fan
In this study, five fusion tags affecting soluble production and cleavage activity of the tobacco etch virus (TEV) protease (TEVp) variant in Escherichia coli strains BL21 (DE3) and Rosetta™ (DE3) are investigated. Combination of the augmenting rare transfer RNAs (tRNAs) and the fused expressivity tag (N-terminal seven amino acid residues of E. coli translation initiation factor II) promotes the soluble TEVp partner expressed at relatively high level. Attachment of the maltose-binding protein (MBP) tag increases soluble expression of the protease released from the fusion protein in E...
December 17, 2016: Applied Biochemistry and Biotechnology
Martijn van Rosmalen, Brian M G Janssen, Nathalie M Hendrikse, Ardjan J van der Linden, Pascal A Pieters, Dave Wanders, Tom F A de Greef, Maarten Merkx
Meditopes are cyclic peptides that bind in a specific pocket in the antigen-binding fragment (Fab) of a therapeutic antibody such as cetuximab. Provided their moderate affinity can be enhanced, meditope peptides could be used as a specific non-covalent and paratope-independent handles in targeted drug delivery, molecular imaging and therapeutic drug monitoring. Here we show that the affinity of a recently reported meditope for cetuximab can be substantially enhanced using a combination of yeast display and deep mutational scanning...
December 14, 2016: Journal of Biological Chemistry
Jeremy H Mills, William Sheffler, Maraia E Ener, Patrick J Almhjell, Gustav Oberdorfer, José Henrique Pereira, Fabio Parmeggiani, Banumathi Sankaran, Peter H Zwart, David Baker
Metal-chelating heteroaryl small molecules have found widespread use as building blocks for coordination-driven, self-assembling nanostructures. The metal-chelating noncanonical amino acid (2,2'-bipyridin-5yl)alanine (Bpy-ala) could, in principle, be used to nucleate specific metalloprotein assemblies if introduced into proteins such that one assembly had much lower free energy than all alternatives. Here we describe the use of the Rosetta computational methodology to design a self-assembling homotrimeric protein with [Fe(Bpy-ala)3](2+) complexes at the interface between monomers...
December 27, 2016: Proceedings of the National Academy of Sciences of the United States of America
Katrin Reichel, Olivier Fisette, Tatjana Braun, Olivier F Lange, Gerhard Hummer, Lars V Schäfer
We critically test and validate the CS-Rosetta methodology for de novo structure prediction of α-helical membrane proteins (MPs) from NMR data, such as chemical shifts and NOE distance restraints. By systematically reducing the number and type of NOE restraints, we focus on determining the regime in which MP structures can be reliably predicted and pinpoint the boundaries of the approach. Five MPs of known structure were used as test systems, phototaxis sensory rhodopsin II (pSRII), a subdomain of pSRII, disul_de binding protein B (DsbB), microsomal prostaglandin E2 synthase-1 (mPGES-1), and translocator protein (TSPO)...
December 9, 2016: Proteins
Manasi A Pethe, Aliza B Rubenstein, Sagar D Khare
Characterizing the substrate specificity of protease enzymes is critical for illuminating the molecular basis of their diverse and complex roles in a wide array of biological processes. Rapid and accurate prediction of their extended substrate specificity would also aid in the design of custom proteases capable of selectively and controllably cleaving biotechnologically or therapeutically relevant targets. However, current in silico approaches for protease specificity prediction, rely on, and are therefore limited by, machine learning of sequence patterns in known experimental data...
December 6, 2016: Journal of Molecular Biology
Christine E Tinberg, Sagar D Khare
The ability to design novel small-molecule binding sites in proteins is a stringent test of our understanding of the principles of molecular recognition, and would have many practical applications, in synthetic biology and medicine. Here, we describe a computational method in the context of the macromolecular modeling suite Rosetta to designing proteins with sites featuring predetermined interactions to ligands of choice. The required inputs for the method are a model of the small molecule and the desired interactions (e...
2017: Methods in Molecular Biology
Nan Wang, Kai Ren, Rong Jia, Wenting Chen, Ruirui Sun
BACKGROUND: Manganese peroxidase (MnP) from Irpex lacteus F17 has been shown to have a strong ability to degrade recalcitrant aromatic pollutants. In this study, a recombinant MnP from I. lacteus F17 was expressed in Escherichia coli Rosetta (DE3) in the form of inclusion bodies, which were refolded to achieve an active enzyme. Further, we optimized the in vitro refolding conditions to increase the recovery yield of the recombinant protein production. Additionally, we attempted to express recombinant MnP in soluble form in E...
December 1, 2016: BMC Biotechnology
Elham Adabi, Fateme Saebi, Amin Moradi Hasan-Abad, Ladan Teimoori-Toolabi, Gholam Ali Kardar
BACKGROUND: Background: Cancer immunotherapy is a promising strategy for cancer treatment. In this strategy, the immune system is triggered to destroy cancer cells. IL-2 is an important factor in passive cancer immunotherapy that helps modulating some important immune functions. One of the IL-2 limitations is low serum half-life; therefore, repetitive high doses of the injections are required to maintain effective concentrations. High-dose IL-2 therapy results in severe side effects; thus, improvement of its serum half-life would provide therapeutic benefits...
2017: Iranian Biomedical Journal
Wai Ling Cheung, Maria Y Chen, Mikhail O Maksimov, A James Link
Lasso peptides are a member of the superclass of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Like all RiPPs, lasso peptides are derived from a gene-encoded precursor protein. The biosynthesis of lasso peptides requires two enzymatic activities: proteolytic cleavage between the leader peptide and the core peptide in the precursor protein, accomplished by the B enzymes, and ATP-dependent isopeptide bond formation, accomplished by the C enzymes. In a subset of lasso peptide biosynthetic gene clusters from Gram-positive organisms, the B enzyme is split between two proteins...
October 26, 2016: ACS Central Science
Hahnbeom Park, Philip Bradley, Per Greisen, Yuan Liu, Vikram Khipple Mulligan, David E Kim, David Baker, Frank DiMaio
Most biomolecular modeling energy functions for structure prediction, sequence design, and molecular docking have been parametrized using existing macromolecular structural data; this contrasts molecular mechanics force fields which are largely optimized using small-molecule data. In this study, we describe an integrated method that enables optimization of a biomolecular modeling energy function simultaneously against small-molecule thermodynamic data and high-resolution macromolecular structural data. We use this approach to develop a next-generation Rosetta energy function that utilizes a new anisotropic implicit solvation model, and an improved electrostatics and Lennard-Jones model, illustrating how energy functions can be considerably improved in their ability to describe large-scale energy landscapes by incorporating both small-molecule and macromolecule data...
December 13, 2016: Journal of Chemical Theory and Computation
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"