Read by QxMD icon Read

triple mode network

J T Zhang, S-S Ma, C-G Yan, S Zhang, L Liu, L-J Wang, B Liu, Y-W Yao, Y-H Yang, X-Y Fang
BACKGROUND: Recently, a triple-network model suggested the abnormal interactions between the executive-control network (ECN), default-mode network (DMN) and salience network (SN) are important characteristics of addiction, in which the SN plays a critical role in allocating attentional resources toward the ECN and DMN. Although increasing studies have reported dysfunctions in these brain networks in Internet gaming disorder (IGD), interactions between these networks, particularly in the context of the triple-network model, have not been investigated in IGD...
July 12, 2017: European Psychiatry: the Journal of the Association of European Psychiatrists
Jie Fan, Mingtian Zhong, Jun Gan, Wanting Liu, Chaoyang Niu, Haiyan Liao, Hongchun Zhang, Jinyao Yi, Raymond C K Chan, Changlian Tan, Xiongzhao Zhu
BACKGROUND: Default mode network (DMN), central executive network (CEN) and salience network (SN) are the three most important intrinsic networks of the human brain. Recent studies emphasized the importance of the "triple-network model" which illustrated the interactions within and between DMN, CEN and SN in the pathophysiology of psychiatric disorders. However, previous studies of obsessive-compulsive disorder (OCD) just explored the altered connectivity within these networks while neglected the coupling between them...
July 20, 2017: Journal of Affective Disorders
Ganesh B Chand, Junjie Wu, Ihab Hajjar, Deqiang Qiu
Previous functional magnetic resonance imaging (fMRI) investigations suggest that the intrinsically organized large-scale networks and the interaction between them might be crucial for cognitive activities. A triple network model, which consists of the default-mode network, salience network, and central-executive network, has been recently used to understand the connectivity patterns of the cognitively normal brains versus the brains with disorders. This model suggests that the salience network dynamically controls the default-mode and central-executive networks in healthy young individuals...
August 10, 2017: Brain Connectivity
Yuchao Jiang, Mingjun Duan, Xi Chen, Xin Chang, Hui He, YingJia Li, Cheng Luo, Dezhong Yao
BACKGROUND: Schizophrenia (SCH) and depression (DEP) are prevalent psychiatric disorders and share common and distinguished elements in their pathophysiology. A triple network model composed of the default mode network (DMN), salience network (SN) and central executive network (CEN) may represent a major abnormality across several psychiatric disorders including SCH and DEP. However, common and distinct dysfunctional patterns between SCH and DEP across three core networks remain unclear...
July 10, 2017: Progress in Neuro-psychopharmacology & Biological Psychiatry
Enyan Yu, Zhengluan Liao, Yunfei Tan, Yaju Qiu, Junpeng Zhu, Zhang Han, Jue Wang, Xinwei Wang, Hong Wang, Yan Chen, Qi Zhang, Yumei Li, Dewang Mao, Zhongxiang Ding
Many functional magnetic resonance imaging (fMRI) studies have indicated that Granger causality analysis (GCA) is a suitable method for revealing causal effects between brain regions. The purpose of the present study was to identify neuroimaging biomarkers with a high sensitivity to amnestic mild cognitive impairment (aMCI). The resting-state fMRI data of 30 patients with Alzheimer's disease (AD), 14 patients with aMCI, and 18 healthy controls (HC) were evaluated using GCA. This study focused on the "triple networks" concept, a recently proposed higher-order functioning-related brain network model that includes the default-mode network (DMN), salience network (SN), and executive control network (ECN)...
May 3, 2017: Brain Imaging and Behavior
Maria C Padula, Marie Schaer, Elisa Scariati, Johanna Maeder, Maude Schneider, Stephan Eliez
Large-scale brain networks play a prominent role in cognitive abilities and their activity is impaired in psychiatric disorders, such as schizophrenia. Patients with 22q11.2 deletion syndrome (22q11DS) are at high risk of developing schizophrenia and present similar cognitive impairments, including executive functions deficits. Thus, 22q11DS represents a model for the study of neural biomarkers associated with schizophrenia. In this study, we investigated structural and functional connectivity within and between the Default Mode (DMN), the Central Executive (CEN), and the Saliency network (SN) in 22q11DS using resting-state fMRI and DTI...
April 2017: Human Brain Mapping
Xia Wu, Qing Li, Xinyu Yu, Kewei Chen, Adam S Fleisher, Xiaojuan Guo, Jiacai Zhang, Eric M Reiman, Li Yao, Rui Li
The triple network model, consisting of the central executive network (CEN), salience network (SN) and default mode network (DMN), has been recently employed to understand dysfunction in core networks across various disorders. Here we used the triple network model to investigate the large-scale brain networks in cognitively normal apolipoprotein e4 (APOE4) carriers who are at risk of Alzheimer's disease (AD). To explore the functional connectivity for each of the three networks and the effective connectivity among them, we evaluated 17 cognitively normal individuals with a family history of AD and at least one copy of the APOE4 allele and compared the findings to those of 12 individuals who did not carry the APOE4 gene or have a family history of AD, using independent component analysis (ICA) and Bayesian network (BN) approach...
2016: Frontiers in Aging Neuroscience
Sara de la Salle, Joelle Choueiry, Dhrasti Shah, Hayley Bowers, Judy McIntosh, Vadim Ilivitsky, Verner Knott
N-methyl-D-aspartate (NMDA) receptor antagonists administered to healthy humans results in schizophrenia-like symptoms, which preclinical research suggests are due to glutamatergically altered brain oscillations. Here, we examined resting-state electroencephalographic activity in 21 healthy volunteers assessed in a placebo-controlled, double-blind, randomized study involving administration of either a saline infusion or a sub-anesthetic dose of ketamine, an NMDA receptor antagonist. Frequency-specific current source density (CSD) was assessed at sensor-level and source-level using eLORETA within regions of interest of a triple network model of schizophrenia (this model posits a dysfunctional switching between large-scale Default Mode and Central Executive networks by the monitor-controlling Salience Network)...
2016: Frontiers in Pharmacology
Akram Afifi, Ahmed El-Rabbany
This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations from three different global navigation satellite system (GNSS) constellations, namely GPS, Galileo, and BeiDou. Combining measurements from different GNSS systems introduces additional biases, including inter-system bias and hardware delays, which require rigorous modelling. Our model is based on the un-differenced and between-satellite single-difference (BSSD) linear combinations. BSSD linear combination cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator...
2016: Sensors
Ekadashi Pradhan, Alex Brown
A six-dimensional potential energy surface (PES) for formyl fluoride (HFCO) is fit in a sum-of-products form using neural network exponential fitting functions. The ab initio data upon which the fit is based were computed at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12]/cc-pVTZ-F12 level of theory. The PES fit is accurate (RMSE = 10 cm(-1)) up to 10 000 cm(-1) above the zero point energy and covers most of the experimentally measured IR data...
May 7, 2016: Journal of Chemical Physics
Stéphanie Lefebvre, Morgane Demeulemeester, Arnaud Leroy, Christine Delmaire, Renaud Lopes, Delphine Pins, Pierre Thomas, Renaud Jardri
The majority of patients with schizophrenia suffer from hallucinations. While the triple-network model, which includes the default mode network (DMN), the central executive network (CEN) and the salience network (SAL), has recently been applied to schizophrenia, how this framework could explain the emergence of hallucinations remains unclear. Therefore, complementary brain regions that have been linked to hallucinations, such as the left hippocampus, should also be considered and added to this model. Accordingly, the present study explored the effective connectivity across these four components (i...
July 2016: Human Brain Mapping
Marcie L Zinn, Mark A Zinn, Leonard A Jason
Exact low resolution electromagnetic tomography (eLORETA) was recorded from nineteen EEG channels in nine patients with myalgic encephalomyelitis (ME) and 9 healthy controls to assess current source density and functional connectivity, a physiological measure of similarity between pairs of distributed regions of interest, between groups. Current source density and functional connectivity were measured using eLORETA software. We found significantly decreased eLORETA source analysis oscillations in the occipital, parietal, posterior cingulate, and posterior temporal lobes in Alpha and Alpha-2...
September 2016: Applied Psychophysiology and Biofeedback
Weidong Cai, Tianwen Chen, Luca Szegletes, Kaustubh Supekar, Vinod Menon
BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is increasingly viewed as a disorder stemming from disturbances in large-scale brain networks, yet the exact nature of these impairments in affected children is poorly understood. We investigated a saliency-based triple-network model and tested the hypothesis that cross-network interactions between the salience network (SN), central executive network, and default mode network are dysregulated in children with ADHD. We also determined whether network dysregulation measures can differentiate children with ADHD from control subjects across multisite datasets and predict clinical symptoms...
November 2, 2015: Biological Psychiatry
Chung-Yi Li, Hai-Han Lu, Cheng-Ling Ying, Chun-Jen Cheng, Che-Yu Lin, Zhi-Wei Wan, Jian-Hua Chen
A full-duplex CATV/wireless-over-fiber lightwave transmission system consisting of one broadband light source (BLS), two optical interleavers (ILs), one intensity modulator, and one phase modulator is proposed and experimentally demonstrated. The downstream light is optically promoted from 10Gbps/25GHz microwave (MW) data signal to 10Gbps/100GHz and 10Gbps/50GHz millimeter-wave (MMW) data signals in fiber-wireless convergence, and intensity-modulated with 50-550 MHz CATV signal. For up-link transmission, the downstream light is phase-remodulated with 10Gbps/25GHz MW data signal in fiber-wireless convergence...
April 6, 2015: Optics Express
Suhyung Cho, Yoo-Bok Cho, Taek Jin Kang, Sun Chang Kim, Bernhard Palsson, Byung-Kwan Cho
DNA-binding motifs that are recognized by transcription factors (TFs) have been well studied; however, challenges remain in determining the in vivo architecture of TF-DNA complexes on a genome-scale. Here, we determined the in vivo architecture of Escherichia coli arginine repressor (ArgR)-DNA complexes using high-throughput sequencing of exonuclease-treated chromatin-immunoprecipitated DNA (ChIP-exo). The ChIP-exo has a unique peak-pair pattern indicating 5' and 3' ends of ArgR-binding region. We identified 62 ArgR-binding loci, which were classified into three groups, comprising single, double and triple peak-pairs...
March 31, 2015: Nucleic Acids Research
Huaguang Zhang, Junyi Wang, Zhanshan Wang, Hongjing Liang
This paper investigates the stochastic synchronization problem for Markovian hybrid coupled neural networks with interval time-varying mode-delays and random coupling strengths. The coupling strengths are mutually independent random variables and the coupling configuration matrices are nonsymmetric. A mode-dependent augmented Lyapunov-Krasovskii functional (LKF) is proposed, where some terms involving triple or quadruple integrals are considered, which makes the LKF matrices mode-dependent as much as possible...
November 2015: IEEE Transactions on Neural Networks and Learning Systems
R Rakkiyappan, A Chandrasekar, G Petchiammal
This paper deals with the problem of robust synchronization for uncertain chaotic neutral-type Markovian jumping neural networks with randomly occurring uncertainties and randomly occurring control gain fluctuations. Then, a sufficient condition is proposed for the existence of non-fragile output controller in terms of linear matrix inequalities (LMIs). Uncertainty terms are separately taken into consideration. This network involves both mode dependent discrete and mode dependent distributed time-varying delays...
November 2014: ISA Transactions
María Salomé Gachet, Peter Rhyn, Oliver G Bosch, Boris B Quednow, Jürg Gertsch
Free arachidonic acid is functionally interlinked with different lipid signaling networks including those involving prostanoid pathways, the endocannabinoid system, N-acylethanolamines, as well as steroids. A sensitive and specific LC-MS/MS method for the quantification of arachidonic acid, prostaglandin E2, thromboxane B2, anandamide, 2-arachidonoylglycerol, noladin ether, lineoyl ethanolamide, oleoyl ethanolamide, palmitoyl ethanolamide, steroyl ethanolamide, aldosterone, cortisol, dehydroepiandrosterone, progesterone, and testosterone in human plasma was developed and validated...
January 22, 2015: Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences
Yue Wang, Yan Qi, Vladislav A Blatov, Jimin Zheng, Qun Li, Chao Zhang
Two new zinc coordination complexes, namely [Zn2(tib)4/3(L(1))2]·DMA (1) and [Zn2(tib)4/3(L(2))2]·H2O (2) (tib = 1,3,5-tris(1-imidazolyl)benzene, H2L(1) = biphenyl-4,4'-dicarboxylic acid, H2L(2) = 4,4'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))dibenzoic acid and DMA = N,N-dimethylacetamide), are obtained using achiral mixed ligands and characterized using elemental analysis, IR and X-ray crystallography. Compounds 1 and 2 both display intriguing structural features of both interpenetration and self-catenation...
October 28, 2014: Dalton Transactions: An International Journal of Inorganic Chemistry
Tae H Lee, S Lakshmanan, Ju H Park, P Balasubramaniam
This paper considers the state estimation problem for Markovian jumping genetic regulatory networks (GRNs) with mode-dependent leakage and time-varying delays. In order to approximate the true concentrations of the mRNA and protein, the state estimator is designed using available measurement outputs. The GRNs are composed of N modes. The system switches from one mode to another according to a Markovian chain with known transition probabilities. Based on the Lyapunov functionals, including triple integral terms, some inequalities, and a time-varying delay partitioning approach, delay-dependent criteria which employ all upper bounds of time delays of each mode are obtained in terms of linear matrix inequalities (LMIs)...
December 2013: IEEE Transactions on Nanobioscience
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"