Read by QxMD icon Read

Yeast epigenetics

Mick F Tuite
A comprehensive analysis uncovered a set of yeast proteins promoting protein-based inheritance that shares many of the non-Mendelian properties of prions. Lacking any sequence or structural signatures of known prions, these proteins represent a new class of non-amyloid, protein-based epigenetic determinants that can control phenotype without impacting genotype.
October 6, 2016: Cell
Yuan Fang, Lei Wang, Ximeng Wang, Qi You, Xiucai Pan, Jin Xiao, Xiu-E Wang, Yufeng Wu, Zhen Su, Wenli Zhang
BACKGROUND: Bidirectional gene pairs are highly abundant and mostly co-regulated in eukaryotic genomes. The structural features of bidirectional promoters (BDPs) have been well studied in yeast, humans and plants. However, the underlying mechanisms responsible for the coexpression of BDPs remain understudied, especially in plants. RESULTS: Here, we characterized chromatin features associated with rice BDPs. Several unique chromatin features were present in rice BDPs but were missing from unidirectional promoters (UDPs), including overrepresented active histone marks, canonical nucleosomes and underrepresented H3K27me3...
September 30, 2016: BMC Genomics
Weilin Peng, Ruijie Song, Murat Acar
Genetic noise together with genome duplication and volume changes during cell cycle are significant contributors to cell-to-cell heterogeneity. How can cells buffer the effects of these unavoidable epigenetic and genetic variations on phenotypes that are sensitive to such variations? Here we show that a simple network motif that is essential for network-dosage compensation can reduce the effects of extrinsic noise on the network output. Using natural and synthetic gene networks with and without the network motif, we measure gene network activity in single yeast cells and find that the activity of the compensated network is significantly lower in noise compared with the non-compensated network...
October 3, 2016: Nature Communications
Karin Weiss, Paulien A Terhal, Lior Cohen, Michael Bruccoleri, Melita Irving, Ariel F Martinez, Jill A Rosenfeld, Keren Machol, Yaping Yang, Pengfei Liu, Magdalena Walkiewicz, Joke Beuten, Natalia Gomez-Ospina, Katrina Haude, Chin-To Fong, Gregory M Enns, Jonathan A Bernstein, Judith Fan, Garrett Gotway, Mohammad Ghorbani, Koen van Gassen, Glen R Monroe, Gijs van Haaften, Lina Basel-Vanagaite, Xiang-Jiao Yang, Philippe M Campeau, Maximilian Muenke
Chromodomain helicase DNA-binding protein 4 (CHD4) is an ATP-dependent chromatin remodeler involved in epigenetic regulation of gene transcription, DNA repair, and cell cycle progression. Also known as Mi2β, CHD4 is an integral subunit of a well-characterized histone deacetylase complex. Here we report five individuals with de novo missense substitutions in CHD4 identified through whole-exome sequencing and web-based gene matching. These individuals have overlapping phenotypes including developmental delay, intellectual disability, hearing loss, macrocephaly, distinct facial dysmorphisms, palatal abnormalities, ventriculomegaly, and hypogonadism as well as additional findings such as bone fusions...
October 6, 2016: American Journal of Human Genetics
Xing-Yong Liu, Xian-Bo Zhang, Ming-Hui Li, Shu-Qing Zheng, Zhi-Long Liu, Yun-Ying Cheng, De-Shou Wang
Chromobox (Cbx) family proteins are transcriptional repressors that involved in epigenetic and developmental processes. In this study, comprehensive analyses of Cbxs were performed using available genome databases from representative animal species. The Cbx family were originated from one Polycomb (Pc) gene like the yeast Pc, which duplicated into two and gave rise to the Pc and the Heterochromatin protein 1 (Hp1) identified in invertebrates from protozoon to lancelet. Rapid expansion of Cbx family members was observed in vertebrates as ~8 (5 Pc and 3 Hp1) were identified in spotted gar, coelacanth and tetrapods...
September 7, 2016: Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology
Ujani Chakraborty, Eric Alani
Mismatch repair (MMR) systems correct DNA mismatches that result from DNA polymerase misincorporation errors. Mismatches also appear in heteroduplex DNA intermediates formed during recombination between nearly identical sequences, and can be corrected by MMR or removed through an unwinding mechanism, known as anti-recombination or heteroduplex rejection. We review studies, primarily in baker's yeast, which support how specific factors can regulate the MMR/anti-recombination decision. Based on recent advances, we present models for how DNA structure, relative amounts of key repair proteins, the timely localization of repair proteins to DNA substrates, and epigenetic marks can modulate this critical decision...
August 28, 2016: FEMS Yeast Research
Kei-Ichi Sugiyama, Hiroko Furusawa, Masatomi Shimizu, Petr Grúz, Masamitsu Honma
We have previously reported that flocculation of a yeast co-transformed with the human DNA methyltransferase 1 (DNMT1) and DNMT3B genes was inhibited by DNMT inhibitors. It is well known that epigenetic mutagens can disturb nucleosome positioning via DNA methylation and/or histone modification. In this study we first examined the effects of trichostatin A (TSA), a histone deacetylase inhibitor, on the flocculation level of yeast. TSA dose-dependently promoted the flocculation exhibited by the yeast transformed with the DNMT genes or empty vectors...
August 22, 2016: Mutagenesis
Claudia Pérez, Francisco J Pérez-Zúñiga, Francisco Garrido, Edel Reytor, Francisco Portillo, María A Pajares
Methionine adenosyltransferases MAT I and MAT III (encoded by Mat1a) catalyze S-adenosylmethionine synthesis in normal liver. Major hepatic diseases concur with reduced levels of this essential methyl donor, which are primarily due to an expression switch from Mat1a towards Mat2a. Additional changes in the association state and even in subcellular localization of these isoenzymes are also detected. All these alterations result in a reduced content of the moderate (MAT I) and high Vmax (MAT III) isoenzymes, whereas the low Vmax (MAT II) isoenzyme increases and nuclear accumulation of MAT I is observed...
2016: PloS One
Germana B Rona, Diego S G Almeida, Anderson S Pinheiro, Elis C A Eleutherio
WHSC1L1/NSD3, one of the most aggressive human oncogenes, has two isoforms derived from alternative splicing. Overexpression of long or short NSD3 is capable of transforming a healthy into a cancer cell. NSD3s, the short isoform, contains only a PWWP domain, a histone methyl-lysine reader involved in epigenetic regulation of gene expression. With the aim of understanding the NSD3s PWWP domain role in tumorigenesis, we used Saccharomyces cerevisiae as an experimental model. We identified the yeast protein Pdp3 that contains a PWWP domain that closely resembles NSD3s PWWP...
August 12, 2016: Oncotarget
Yuan Shen, Emmanuelle Issakidis-Bourguet, Dao-Xiu Zhou
Epigenetic modifications of chromatin usually involve consumption of key metabolites and redox-active molecules. Primary metabolic flux and cellular redox states control the activity of enzymes involved in chromatin modifications, such as DNA methylation, histone acetylation, and histone methylation, which in turn regulate gene expression and/or enzymatic activity of specific metabolic and redox pathways. Thus, coordination of metabolism and epigenetic regulation of gene expression is critical to control growth and development in response to the cellular environment...
October 2016: Journal of Experimental Botany
Maria Derkacheva, Shujing Liu, Duarte D Figueiredo, Matthew Gentry, Iva Mozgova, Paolo Nanni, Min Tang, Mattias Mannervik, Claudia Köhler, Lars Hennig
Polycomb group (PcG) proteins form an epigenetic memory system in plants and animals, but interacting proteins are poorly known in plants. Here, we have identified Arabidopsis UBIQUITIN SPECIFIC PROTEASES (USP; UBP in plant and yeasts) 12 and 13 as partners of the plant-specific PcG protein LIKE HETEROCHROMATIN PROTEIN 1 (LHP1). UBP12 binds to chromatin of PcG target genes and is required for histone H3 lysine 27 trimethylation and repression of a subset of PcG target genes. Plants lacking UBP12 and UBP13 developed autonomous endosperm in the absence of fertilization...
2016: Nature Plants
Aisling Y Coughlan, Sara J Hanson, Kevin P Byrne, Kenneth H Wolfe
Centromere organization has evolved dramatically in one clade of fungi, the Saccharomycotina. These yeasts have lost the ability to make normal eukaryotic heterochromatin with histone H3K9 methylation, which is a major component of pericentromeric regions in other eukaryotes. Following this loss, several different types of centromere emerged, including two types of sequence-defined ("point") centromeres, and the epigenetically defined "small regional" centromeres of Candida albicans Here we report that centromeres of the methylotrophic yeast Komagataella phaffii (formerly called Pichia pastoris) are structurally defined...
2016: Genome Biology and Evolution
Francesca Rusconi, Paola Ceriotti, Michele Miragoli, Pierluigi Carullo, Nicolò Salvarani, Marcella Rocchetti, Elisa Di Pasquale, Stefano Rossi, Maddalena Tessari, Silvia Caprari, Magali Cazade, Paolo Kunderfranco, Jean Chemin, Marie-Louise Bang, Fabio Polticelli, Antonio Zaza, Giuseppe Faggian, Gianluigi Condorelli, Daniele Catalucci
BACKGROUND: L-type calcium channels (LTCCs) play important roles in regulating cardiomyocyte physiology, which is governed by appropriate LTCC trafficking to and density at the cell surface. Factors influencing the expression, half-life, subcellular trafficking, and gating of LTCCs are therefore critically involved in conditions of cardiac physiology and disease. METHODS: Yeast 2-hybrid screenings, biochemical and molecular evaluations, protein interaction assays, fluorescence microscopy, structural molecular modeling, and functional studies were used to investigate the molecular mechanisms through which the LTCC Cavβ2 chaperone regulates channel density at the plasma membrane...
August 16, 2016: Circulation
Shu Liu, André Hossinger, Julia P Hofmann, Philip Denner, Ina M Vorberg
UNLABELLED: Prions are infectious protein particles that replicate by templating their aggregated state onto soluble protein of the same type. Originally identified as the causative agent of transmissible spongiform encephalopathies, prions in yeast (Saccharomyces cerevisiae) are epigenetic elements of inheritance that induce phenotypic changes of their host cells. The prototype yeast prion is the translation termination factor Sup35. Prions composed of Sup35 or its modular prion domain NM are heritable and are transmitted vertically to progeny or horizontally during mating...
2016: MBio
Ruchi Jain, Nahid Iglesias, Danesh Moazed
Small-RNA (sRNA)-guided transcriptional gene silencing by Argonaute (Ago)-containing complexes is fundamental to genome integrity and epigenetic inheritance. The RNA cleavage ("Slicer") activity of Argonaute has been implicated in both sRNA maturation and target RNA cleavage. Typically, Argonaute slices and releases the passenger strand of duplex sRNA to generate active silencing complexes, but it remains unclear whether slicing of target nascent RNAs, or other RNAi components, also contributes to downstream transcriptional silencing...
July 21, 2016: Molecular Cell
Abid Ali Khan, Nafess Bacha, Bashir Ahmad, R J Cox, Jehan Bakht
The present study investigates the effect of different growth media and chemical enhancer on silent genes in Aspergillus carbonarius (NRL-369) for secondary metabolites production and its in vitro biological activities. Results revealed that Aspergillus carbonarius (NRL-369) grown in Czapeak yeast extract broth medium produced more metabolites compared with other media. Chemical epigenetic modifiers (suberoyl-anilide hydroxamic acid (SAHA) and 5-azacytidine (5-AZA) at concentration of 15mM were effective for the expression of silent genes resulting in increased secondary metabolites production...
July 2016: Pakistan Journal of Pharmaceutical Sciences
Fabian Erdel, Eric C Greene
Histone modifications can redistribute along the genome in a sequence-independent manner, giving rise to chromatin position effects and epigenetic memory. The underlying mechanisms shape the endogenous chromatin landscape and determine its response to ectopically targeted histone modifiers. Here, we simulate linear and looping-driven spreading of histone modifications and compare both models to recent experiments on histone methylation in fission yeast. We find that a generalized nucleation-and-looping mechanism describes key observations on engineered and endogenous methylation domains including intrinsic spatial confinement, independent regulation of domain size and memory, variegation in the absence of antagonists, and coexistence of short- and long-term memory at loci with weak and strong constitutive nucleation...
July 19, 2016: Proceedings of the National Academy of Sciences of the United States of America
Lue Sun, Yan Zhang, Zhuqiang Zhang, Yong Zheng, Lilin Du, Bing Zhu
Epigenetic systems are well known for the roles they play in regulating the differential expression of the same genome in different cell types. However, epigenetic systems can also directly impact genomic integrity by protecting genetic sequences. Using an experimental evolutionary approach, we studied rates of mutation in the fission yeast Schizosaccharomyces pombe strains that lacked genes encoding several epigenetic regulators or mismatch repair components. We report that loss of a functional mismatch repair pathway in S...
August 19, 2016: Journal of Biological Chemistry
Y-H Taguchi
BACKGROUND: The recently proposed principal component analysis (PCA) based unsupervised feature extraction (FE) has successfully been applied to various bioinformatics problems ranging from biomarker identification to the screening of disease causing genes using gene expression/epigenetic profiles. However, the conditions required for its successful use and the mechanisms involved in how it outperforms other supervised methods is unknown, because PCA based unsupervised FE has only been applied to challenging (i...
2016: BioData Mining
Franklin W Stahl, Maryam Binti Mohamed Rehan, Henriette M Foss, Rhona H Borts
Previously published, and some unpublished, tetrad data from budding yeast (Saccharomyces cerevisiae) are analyzed for disparity in gene conversion, in which one allele is more often favored than the other (conversion disparity). One such disparity, characteristic of a bias in the frequencies of meiotic double-strand DNA breaks at the hotspot near the His4 locus, is found in diploids that undergo meiosis soon after their formation, but not in diploids that have been cloned and frozen. Altered meiotic DNA breakability associated with altered metabolism-related chromatin states has been previously reported...
September 2016: Genetics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"