keyword
MENU ▼
Read by QxMD icon Read
search

cell studies

keyword
https://www.readbyqxmd.com/read/28532140/effective-treatment-of-cervical-lymph-node-metastasis-of-breast-cancer-by-low-voltage-high-frequency-electrochemotherapy
#1
Bahram Mofid, Zeinab Shankayi, Kambiz Novin, Sadegh Dehghani, Morteza Shankayi, Hamidreza Haghighatkhah, S Mohammad Firoozabadi
Electrochemotherapy (ECT) is a new local treatment method for solid and superficial tumors. During this new technique, patients experience an unpleasant sensation and slight edema. Most unpleasant and painful is mainly attributed to muscle contractions provoked by high amplitude and low repetition frequency pulses. Recently, we showed that electrochemotherapy using low voltage and higher repetition frequency (LVHF ECT) is an effective tool for inhibiting tumor growth and inducing cell permeabilization. Low voltage high-frequency electrochemotherapy was developed and optimized in vitro and in vivo which and can be used in the clinic...
April 2017: Acta Medica Iranica
https://www.readbyqxmd.com/read/28532126/poly-%C3%AE-glutamic-acid-coated-lipoplexes-loaded-with-doxorubicin-for-enhancing-the-antitumor-activity-against-liver-tumors
#2
Na Qi, Bo Tang, Guang Liu, Xingsi Liang
The study was to develop poly-γ-glutamic acid (γ-PGA)-coated Doxorubicin (Dox) lipoplexes that enhance the antitumor activity against liver tumors. γ-PGA-coated lipoplexes were performed by electrostatistically attracting to the surface of cationic charge liposomes with anionic γ-PGA. With the increasing of γ-PGA concentration, the particle size of γ-PGA-coated Dox lipoplexes slightly increased, the zeta potential from positive shifted to negative, and the entrapment efficiency (EE) were no significant change...
December 2017: Nanoscale Research Letters
https://www.readbyqxmd.com/read/28532120/ultra-small-silver-nanoparticles-induced-ros-activated-toll-pathway-against-staphylococcus-aureus-disease-in-silkworm-model
#3
Pala Rajasekharreddy, Pathipati Usha Rani, Saidulu Mattapally, Sanjay Kumar Banerjee
The present study investigated the therapeutic action of flavonoids loaded silver nanoparticles (FLV-Ag NPs) on a silkworm, Bombyx mori L., larvae infected by the S. aureus, where an in vivo model system was used. FLV-Ag NPs were synthesized using a Ricinus communis L. leaf extracted flavonoid mixture in various concentrations. The reduction reaction was performed under a simple sunlight exposure condition. In the reduction process, quercetin and kaempferol loadings were also found. They were confirmed by UV-visible, TEM, XRD, XPS, DLS and FTIR spectroscopic techniques...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532118/facile-synthesis-of-polymeric-fluorescent-organic-nanoparticles-based-on-the-self-polymerization-of-dopamine-for-biological-imaging
#4
Yingge Shi, Ruming Jiang, Meiying Liu, Lihua Fu, Guangjian Zeng, Qing Wan, Liucheng Mao, Fengjie Deng, Xiaoyong Zhang, Yen Wei
Polymeric fluorescent organic nanoparticles (polymer-FONs) have raised considerable research attention for biomedical applications owing to their advantages as compared with fluorescent inorganic nanoparticles and small organic molecules. In this study, we presented an efficient, facile and environment-friendly strategy to produce polymer-FONs, which relied on the self-polymerization of dopamine and polyethyleneimine (PEI) in rather mild conditions. To obtain the final polymer-FONs, aldehyde group-containing copolymers (named as poly(UA-co-PEGMA)) were synthesized by reversible addition-fragmentation chain-transfer polymerization using polyethylene glycol methyl ether methacrylate (PEGMA) and 1-undecen-10-al (UA) as monomers...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532117/optimization-for-extracellular-biosynthesis-of-silver-nanoparticles-by-penicillium-aculeatum-su1-and-their-antimicrobial-activity-and-cytotoxic-effect-compared-with-silver-ions
#5
Liang Ma, Wei Su, Jian-Xin Liu, Xiao-Xi Zeng, Zhi Huang, Wen Li, Zheng-Chun Liu, Jian-Xin Tang
The present study addresses an eco-friendly and energy-saving method for extracellular biosynthesis of silver nanoparticles (AgNPs) using a cell free filtrate of the fungus strain Penicillium aculeatum Su1 as a reducing agent. Parametric optimization of the biosynthesis process demonstrated different effects on the size, distribution, yield, and synthesis rate of biosynthesized AgNPs. The transmission electron microscopy (TEM) measurements demonstrated that AgNPs were spherical or approximately spherical, with a size between 4 and 55nm...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532114/hypocrellin-b-and-nano-silver-loaded-polymeric-nanoparticles-enhanced-generation-of-singlet-oxygen-for-improved-photodynamic-therapy
#6
Subramanian Natesan, Venkateshwaran Krishnaswami, Chandrasekar Ponnusamy, Madi Madiyalakan, Thomas Woo, Rajaguru Palanisamy
A nanoparticulate photodynamic approach was employed with an objective to achieve enhanced production of singlet oxygen ((1)O2), for the management of posterior segment eye diseases like age related macular degeneration. The hypocrellin B (HB) loaded poly lactide-co-glycolide nanoparticle formulations were incorporated with nano silver (HBS-NPs). The optimized HBS-NPs contained 2.60±0.06mg/mL of HB and showed (i) 135.6 to 828.2nm size range, and (ii) negative zeta potential with a narrow polydispersity index...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532106/hydrogel-loaded-with-self-assembled-dextran-sulfate-doxorubicin-complexes-as-a-delivery-system-for-chemotherapy
#7
Xiaoyun Niu, Zhiling Zhang, Yinghui Zhong
Standard clinical care for breast cancer includes lumpectomy followed by localized radiotherapy or chemotherapy. However, both therapies cause loss of normal, healthy tissue in addition to tumor tissue, leading to undesirable side effects. In this study, we found that low dose and prolonged treatment with anticancer drug doxorubicin (DOX) can completely eliminate MDA-MB-231 breast cancer cells with low cytotoxicity to NIH 3T3 fibroblasts. We further developed a novel biomaterial-based drug delivery system for controlled and sustained release of low doses of DOX based on self-assembled dextran sulfate (DS)-DOX complexes...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532104/in-situ-synthesis-and-characterization-of-hydroxyapatite-natural-rubber-composites-for-biomedical-applications
#8
T A Dick, L A Dos Santos
In this work, a biomimetic synthesis reaction for the production of hydroxyapatite (HA)/natural rubber (NR) composites is presented. HA was synthesized in the presence of solubilized NR in tetrahydrofuran (THF), which permits that negatively charged domains in proteins and lipids in NR work as nucleation sites for hydroxyapatite. The mechanical and physicochemical properties of composites containing 10, 20 and 30wt% HA were studied. NR influenced HA crystallite morphology, shape and size and was able to disperse the HA particles in THF...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532102/islet-encapsulated-implantable-composite-hollow-fiber-membrane-based-device-a-bioartificial-pancreas
#9
Rohit S Teotia, Sachin Kadam, Atul Kumar Singh, Surendra Kumar Verma, Ashutosh Bahulekar, Sujata Kanetkar, Jayesh Bellare
Islets from xeno-sources and islet like clusters derived from autologus stem cells have emerged as alternatives to cadaveric pancreas used for treatment of type 1 diabetes. However, the immuno-isolation of these islets from the host immune system suffers from the issue of biocompatibility and hypoxia. To overcome the issues of immunobarrier biocompatibility, we developed a Polysulfone (Psf)/TPGS composite hollow fiber membrane (HFM) using a hollow fiber spinning pilot plant specially developed for this purpose...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532100/the-controlled-drug-release-by-ph-sensitive-molecularly-imprinted-nanospheres-for-enhanced-antibacterial-activity
#10
Congyang Mao, Xianzhou Xie, Xiangmei Liu, Zhenduo Cui, Xianjin Yang, K W K Yeung, Haobo Pan, Paul K Chu, Shuilin Wu
In this study, we prepared pH-sensitive hybrid nanospheres through the implementation of a facile molecularly imprinted polymer (MIP) technique combined with a UV-initiated precipitation polymerization method using vancomycin (VA) for the templates. During the course of this investigation, both 2-hydroxyethyl methacrylate (HEMA) and 2-(diethylamino) ethyl methacrylate (DEAEMA) were utilized as the functional monomers, while ethylene glycol dimethacrylate (EGDMA) was used as a cross-linker. The obtained MIP nanospheres exhibited well-controlled particle size, with a drug loading capacity of about 17%, much higher than that of the non-imprinted polymer (NIP) nanospheres (5%)...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532095/antitumor-activity-and-safety-evaluation-of-nanaparticle-based-delivery-of-quercetin-through-intravenous-administration-in-mice
#11
Jian Li, Ming Shi, Baoling Ma, Ruixu Niu, Haizhao Zhang, Li Kun
The present study focused on the inhibition effects and the safety evaluation of the quercetin when it was loaded into the nanoliposomes on cervical cancer in vitro and in vivo. Quercetin loaded nanoliposomes (Que-NLs) were first prepared by thin film hydration method and the characterizations of Que-NLs were measured with TEM and dynamic light scattering (DLS) techniques. Then the anti-cervical cancer efficiencies were evaluated by MTT and U14 tumor-bearing mice models in vitro and in vivo respectively. The body changes, organ index, biochemical criterions and histopathological of livers and kidneys in tumor-bearing mice were further assayed to evaluate the safety of Que-NLs...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532092/cytocompatibility-studies-of-titania-doped-calcium-borosilicate-bioactive-glasses-in-vitro
#12
Rajkumar Samudrala, Abdul Azeem P, Vasudevarao Penugurti, Bramanandam Manavathi
The present study aims to elucidate the applications of Titania (TiO2) doped calcium borosilicate glass as a biocompatible material in regenerative orthopedic applications. In this context, we have examined the bioactivity of various concentrations of TiO2 doped glasses with the help of simulated body fluid (SBF). Cytocompatibility, cell proliferation, and protein expression studies revealed the potential candidature of TiO2 doped glasses on osteoblast cell lines (MG-63). We hypothesized that TiO2 doped calcium borosilicate glasses are most cytocompatible material for bone implants...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532085/mesoporous-nano-bioglass-designed-for-the-release-of-imatinib-and-in-vitro-inhibitory-effects-on-cancer-cells
#13
Muhammad Shoaib, Aamer Saeed, Muhammad Saif Ur Rahman, Muhammad Moazzam Naseer
For treating bone cancer, controlled drug delivery is an important strategy. Bioactive scaffolds are widely used biomaterials due to their usefulness in localized drug delivery. The aim of this study was to develop mesoporous bioglass (MBG) with improved bioactivity and controllable drug delivery rate. By using pluronic 123 (P123) as a template, a facile sol-gel route was employed for the synthesis of MBG nanoparticles (NPs). The composition of the prepared sample was estimated by using energy dispersive X-ray spectroscopy (EDX)...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532079/nerve-growth-factor-loaded-heparinized-cationic-solid-lipid-nanoparticles-for-regulating-membrane-charge-of-induced-pluripotent-stem-cells-during-differentiation
#14
Yung-Chih Kuo, Rajendiran Rajesh
Nerve growth factor (NGF)-loaded heparinized cationic solid lipid nanoparticles (NGF-loaded HCSLNs) were developed using heparin-stearic acid conjugate, cacao butter, cholesterol, stearylamine (SA), and esterquat 1 (EQ 1). The effect of cationic lipids and lipid matrix composition on the particle size, particle structure, surface molecular composition, chemical structure, electrophoretic mobility, and zeta potential of HCSLNs was investigated. The effect of HCSLNs on the membrane charge of induced pluripotent stem cells (iPSCs) was also studied...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532074/highly-effective-cu-zn-carbon-micro-nanofiber-polymer-nanocomposite-based-wound-dressing-biomaterial-against-the-p-aeruginosa-multi-and-extensively-drug-resistant-strains
#15
Mohammad Ashfaq, Nishith Verma, Suphiya Khan
Pseudomonas aeruginosa (P. aeruginosa) is the most prevalent bacteria in the infections caused by burn, surgery, and traumatic injuries. Emergence of the P. aeruginosa bacterial resistance against various clinical drugs for wound treatment is the major concern nowadays. The present study describes the synthesis of the polyvinyl alcohol (PVA) and cellulose acetate phthalate (CAP) polymeric composite film (~0.2mm thickness) reinforced with the Cu/Zn bimetal-dispersed activated carbon micro/nanofiber (ACF/CNF), as a wound dressing material...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532070/ribose-mediated-crosslinking-of-collagen-hydroxyapatite-hybrid-scaffolds-for-bone-tissue-regeneration-using-biomimetic-strategies
#16
Gopal Shankar Krishnakumar, Natalia Gostynska, Elisabetta Campodoni, Massimiliano Dapporto, Monica Montesi, Silvia Panseri, Anna Tampieri, Elizaveta Kon, Maurilio Marcacci, Simone Sprio, Monica Sandri
This study explores for the first time the application of ribose as a highly biocompatible agent for the crosslinking of hybrid mineralized constructs, obtained by bio-inspired mineralization of self-assembling Type I collagen matrix with magnesium-doped-hydroxyapatite nanophase, towards a biomimetic mineralized 3D scaffolds (MgHA/Coll) with excellent compositional and structural mimicry of bone tissue. To this aim, two different crosslinking mechanisms in terms of pre-ribose glycation (before freeze drying) and post-ribose glycation (after freeze drying) were investigated...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532065/in-vitro-performance-of-ag-incorporated-hydroxyapatite-and-its-adhesive-porous-coatings-deposited-by-electrostatic-spraying
#17
Ozkan Gokcekaya, Thomas J Webster, Kyosuke Ueda, Takayuki Narushima, Celaletdin Ergun
Bacterial infection of implanted materials is a significant complication that might require additional surgical operations for implant retrieval. As an antibacterial biomaterial, Ag-containing hydroxyapatite (HA) may be a solution to reduce the incidences of implant associated infections. In this study, pure, 0.2mol% and 0.3mol% Ag incorporated HA powders were synthesized via a precipitation method. Colloidal precursor dispersions prepared from these powders were used to deposit porous coatings onto titanium and stainless steel substrates via electrostatic spraying...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532062/polylactide-and-polycaprolactone-based-substrates-enhance-angiogenic-potential-of-human-umbilical-cord-derived-mesenchymal-stem-cells-in-vitro-implications-for-cardiovascular-repair
#18
Małgorzata Sekuła, Patrycja Domalik-Pyzik, Anna Morawska-Chochół, Sylwia Bobis-Wozowicz, Elżbieta Karnas, Sylwia Noga, Dariusz Boruczkowski, Marta Adamiak, Zbigniew Madeja, Jan Chłopek, Ewa K Zuba-Surma
Recent approaches in tissue regeneration focus on combining innovative achievements of stem cell biology and biomaterial sciences to develop novel therapeutic strategies for patients. Growing recent evidence indicates that mesenchymal stem cells harvested from human umbilical cord Wharton's jelly (hUC-MSCs) are a new valuable source of cells for autologous as well as allogeneic therapies in humans. hUC-MSCs are multipotent, highly proliferating cells with prominent immunoregulatory activity. In this study, we evaluated the impact of widely used FDA approved poly(α-esters) including polylactide (PLA) and polycaprolactone (PCL) on selected biological properties of hUC-MSCs in vitro...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532060/design-and-characterization-of-biodegradable-macroporous-hybrid-inorganic-organic-polymer-for-orthopedic-applications
#19
Sunita PremVictor, Jibin Kunnumpurathu, M G Gayathri Devi, K Remya, Vineeth M Vijayan, Jayabalan Muthu
We have engineered hybrid polymer products based on a hybrid inorganic-organic comacromer consisting of hydroxyapatite (HA), carboxyl terminated polypropylene fumarate (CTPPF), PEG300 and ascorbic acid (AA) as a bone graft material. The integration and the spatial distribution of HA in the polymer backbone were facilitated by silanisation and 1-ethyl-3-(-3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) coupling technique. These comacromers and crosslinked polymer products were characterized by Fourier transform infrared spectroscopy (FTIR), Nuclear magnetic resonance (NMR), Scanning electron microscopy (SEM) and Raman mapping techniques...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28532058/interaction-of-nanostructured-tio2-biointerfaces-with-stem-cells-and-biofilm-forming-bacteria
#20
Mukta Kulkarni, Ita Junkar, Petr Humpolíček, Zdenka Capáková, Katarzyna Anna Radaszkiewicz, Nikola Mikušová, Jiří Pacherník, Marián Lehocký, Aleš Iglič, Markéta Hanáčková, Miran Mozetič
Nanostructured TiO2 nanotubes (NTs) of diameters from 15 to 100nm were fabricated by an electrochemical anodization process. Biofilm-positive strains of Bacillus cereus and Pseudomonas aeruginosa behaved similarly on all TiO2 NTs as well as on native titanium (Ti) foil. The adhesion and growth of mesenchymal stem cells (MSc), embryonic stem cells (ESc), and pure cardiomyocytes derived from ESc exhibited significant differences. MSc as well as ESc were, in contrast to cardiomyocytes, able to adhere, and grow on TiO2 NTs...
August 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
keyword
keyword
72125
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"