Read by QxMD icon Read

chemical senses

Stefanie Luecke, Søren R Paludan
Nucleic acids sensors of the innate immune system recognize various RNA and DNA structures during infection to induce transcription of interferon and pro-inflammatory cytokines and activation of inflammasomes. Cytosolic RNA is recognized by RIG-I and MDA5, while intracellular DNA is sensed among others by cGAS, AIM2, IFI16 and RNA polymerase III. The diversity of nucleic acid species produced during infection in the cytosol and nucleus and the limited chemical differences between self and non-self nucleic acids challenge the host's innate pattern recognition system to ensure reliable sensing while avoiding immune activation by self nucleic acids...
October 14, 2016: Cytokine
Marco Sturaro, Enrico Della Gaspera, Niccolò Michieli, Carlo Cantalini, Seyed Mahmoud Emamjomeh, Massimo Guglielmi, Alessandro Martucci
Highly doped wide band gap metal oxides nanocrystals have recently been proposed as building blocks for applications as transparent electrodes, electrochromics, plasmonics, and optoelectronics in general. Here we demonstrate the application of gallium doped zinc oxide (GZO) nanocrystals as novel plasmonic and chemiresistive sensors for the detection of hazardous gases including hydrogen (H2) and nitrogen dioxide (NO2). GZO nanocrystals with a tunable surface plasmon resonance in the near infrared are obtained using a colloidal heat-up synthesis...
October 18, 2016: ACS Applied Materials & Interfaces
Jumpei F Yamagishi, Nen Saito, Kunihiko Kaneko
As cells grow and divide under a given environment, they become crowded and resources are limited, as seen in bacterial biofilms and multicellular aggregates. These cells often show strong interactions through exchanging chemicals, as evident in quorum sensing, to achieve mutualism and division of labor. Here, to achieve stable division of labor, three characteristics are required. First, isogenous cells differentiate into several types. Second, this aggregate of distinct cell types shows better growth than that of isolated cells without interaction and differentiation, by achieving division of labor...
October 2016: PLoS Computational Biology
Baohu Dai, Jizhuang Wang, Ze Xiong, Xiaojun Zhan, Wei Dai, Chien-Cheng Li, Shien-Ping Feng, Jinyao Tang
Phototaxis is commonly observed in motile photosynthetic microorganisms. For example, green algae are capable of swimming towards a light source (positive phototaxis) to receive more energy for photosynthesis, or away from a light source (negative phototaxis) to avoid radiation damage or to hide from predators. Recently, with the aim of applying nanoscale machinery to biomedical applications, various inorganic nanomotors based on different propulsion mechanisms have been demonstrated. The only method to control the direction of motion of these self-propelled micro/nanomotors is to incorporate a ferromagnetic material into their structure and use an external magnetic field for steering...
October 17, 2016: Nature Nanotechnology
Yuxiang Qin, Yongyao Wang, Yi Liu, Xiaojuan Zhang
The limited surface area and compacted configuration of silicon nanowires (SiNWs), which are made by one-step metal-assisted chemical etching (MACE) go against target gas diffusion and adsorbtion for gas sensing application. To harvest suitable gas sensitivity and fast response-recovery characteristics, an aligned, rough SiNW array with loose configuration and high surface area was fabricated by a two-step etching process. The MACE technique was first employed to fabricate a smooth SiNW array, and then a KOH post-etching method was developed to roughen the NW surface further...
October 17, 2016: Nanotechnology
Anandram Venkatasubramanian, Vincent T K Sauer, Swapan K Roy, Mike Xia, David S Wishart, Wayne K Hiebert
Micro-Gas Chromatography (GC) is promising for portable chemical analysis. We demonstrate a nano-optomechanical system (NOMS) as an ultrasensitive mass detector in gas chromatography. Bare, native oxide, silicon surfaces are sensitive enough to monitor volatile organic compounds at ppm levels, while simultaneously demonstrating chemical selectivity. The NOMS is able to sense GC peaks from derivatized metabolites at physiological concentrations. This is an important milestone for small-molecule quantitation assays in next generation metabolite analyses for applications such as disease diagnosis and personalized medicine...
October 17, 2016: Nano Letters
Steven W Barger
Ask any neuroscientist to name the most profound discoveries in the field in the past 60 years, and at or near the top of the list will be a phenomenon or technique related to genes and their expression. Indeed, our understanding of genetics and gene regulation has ushered in whole new systems of knowledge and new empirical approaches, many of which could not have even been imagined prior to the molecular biology boon of recent decades. Neurochemistry, in the classic sense, intersects with these concepts in the manifestation of neuropeptides, obviously dependent upon the central dogma (the established rules by which DNA sequence is eventually converted into protein primary structure) not only for their conformation but also for their levels and locales of expression...
October 17, 2016: Journal of Neurochemistry
Isabella Bertani, Cara E Steger, Daniel R Obenour, Gary L Fahnenstiel, Thomas B Bridgeman, Thomas H Johengen, Michael J Sayers, Robert A Shuchman, Donald Scavia
Cyanobacteria blooms are a major environmental issue worldwide. Our understanding of the biophysical processes driving cyanobacterial proliferation and the ability to develop predictive models that inform resource managers and policy makers rely upon the accurate characterization of bloom dynamics. Models quantifying relationships between bloom severity and environmental drivers are often calibrated to an individual set of bloom observations, and few studies have assessed whether differences among observing platforms could lead to contrasting results in terms of relevant bloom predictors and their estimated influence on bloom severity...
October 12, 2016: Science of the Total Environment
Faten K Abd El-Hady, Walid Fayad, Carmine Iodice, Zeinab A El-Shahid, Mohamed S Abdel-Aziz, Egle Crudele, Giuseppina Tommonaro
Marine organisms have been considered as the richest sources of novel bioactive metabolites, which can be used for pharmaceutical purposes. In the last years, the interest for marine microorganisms has grown for their enormous biodiversity and for the evidence that many novel compounds isolated from marine invertebrates are really synthesized by their associated bacteria. Nevertheless, the discovery of a chemical communication Quorum sensing (QS) between bacterial cells and between bacteria and host has gained the researchers to expand the aim of their study toward the role of bacteria associated with marine invertebrates, such as marine sponge...
October 14, 2016: Current Microbiology
Luiz Guilherme Medeiros Pessoa, Maria Betânia Galvão Dos Santos Freire, Bradford Paul Wilcox, Colleen Heather Machado Green, Rômulo José Tolêdo De Araújo, José Coelho De Araújo Filho
In northeastern Brazil, large swaths of once-productive soils have been severely degraded by soil salinization, but the true extent of the damage has not been assessed. Emerging remote sensing technology based on hyperspectral analysis offers one possibility for large-scale assessment, but it has been unclear to what extent the spectral properties of soils are related to salinity characteristics. The purpose of this study was to characterize the spectral properties of degraded (saline) and non-degraded agricultural soils in northeastern Brazil and determine the extent to which these properties correspond to soil salinity...
November 2016: Environmental Monitoring and Assessment
Muhammad Saqib, Suping Li, Wenyue Gao, Saadat Majeed, Liming Qi, Zhongyuan Liu, Guobao Xu
The development of novel coreactants for chemiluminescence is very important to improve performance and widen its applications without using any other catalyst. N-Hydroxysuccinimide (NHS), a highly popular amine-reactive, activating, or protecting reagent in biochemical applications and organic synthesis, has been explored as an efficient and stable chemiluminescence coreactant for the first time. The chemiluminescence intensity of the newly developed luminol-NHS system is about 22 times higher than that of the traditional luminol-H2O2 system...
October 13, 2016: Analytical and Bioanalytical Chemistry
Manik Lal Saha, Xuzhou Yan, Peter J Stang
Over the past couple of decades, coordination-driven self-assembly has evolved as a broad multidisciplinary domain that not only covers the syntheses of aesthetically pleasing supramolecular architectures but also emerges as a method to form new optical materials, chemical sensors, theranostic agents, and compounds with light-harvesting and emissive properties. The majority of these applications depend upon investigations that reveal the photophysical nature and electronic structure of supramolecular coordination complexes (SCCs), including two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages...
October 13, 2016: Accounts of Chemical Research
Oliver Hayden
High quality binders, such as antibodies, are of critical importance for chemical sensing applications. With synthetic alternatives, such as molecularly imprinted polymers (MIPs), less sensor development time and higher stability of the binder can be achieved. In this feature paper, I will discuss the impact of synthetic binders from an industrial perspective and I will challenge the molecular imprinting community on the next step to leapfrog the current status quo of MIPs for (bio)sensing. Equally important, but often neglected as an effective chemical sensor, is a good match of transducer and MIP coating for a respective application...
October 10, 2016: Sensors
Jens P Froning, Petr Lazar, Martin Pykal, Qiang Li, Mingdong Dong, Radek Zbořil, Michal Otyepka
Graphene oxide is one of the most studied nanomaterials owing to its huge application potential in many fields, including biomedicine, sensing, drug delivery, optical and optoelectronic technologies. However, a detailed description of the chemical composition and the extent of oxidation in graphene oxide remains a key challenge affecting its applicability and further development of new applications. Here, we report direct monitoring of the chemical oxidation of an individual graphene flake during ultraviolet/ozone treatment through in situ atomic force microscopy based on dynamic force mapping...
October 13, 2016: Nanoscale
Jodi L Brewster, James L O McKellar, Thomas J Finn, Janet Newman, Thomas S Peat, Monica L Gerth
Chemoreceptors enable bacteria to detect chemical signals in the environment and navigate towards niches that are favourable for survival. The sensor domains of chemoreceptors function as the input modules for chemotaxis systems, and provide sensory specificity by binding specific ligands. Cache-like domains are the most common extracellular sensor module in prokaryotes, however only a handful have been functionally or structurally characterised. Here, we have characterised a chemoreceptor Cache-like sensor domain (PscD-SD) from the plant pathogen Pseudomonas syringae pv...
October 13, 2016: Scientific Reports
Amanpreet Singh, Pushap Raj, Narinder Singh
The unregulated use of chemical weapons has aroused researchers to develop sensors for chemical warfare agents (CWA) and likewise to abolish their harmful effects, the degradation through catalysis has great advantage. Chemically, the CWAs are versatile; however, mostly they contain organophosphates that act on inhibition of acetyl cholinesterase. In this work, we have designed and synthesized some novel benzimidazolium based fluorescent cations and their fluorescent aggregates were fabricated using anionic surfactants (SDS and SDBS) in aqueous medium...
October 12, 2016: ACS Applied Materials & Interfaces
Santiago Rodríguez-Jiménez, Humphrey L C Feltham, Sally Brooker
Materials capable of sensing volatile guests at room temperature by an easily monitored set of outputs are of great appeal for development as chemical sensors of small volatile organics and toxic gases. Herein the dinuclear iron(II) complex, [Fe(II)2 (L)2 (CH3 CN)4 ](BF4 )4 ⋅2 CH3 CN (1) [L=4-(4-methylphenyl)-3-(3-pyridazinyl)-5-pyridyl-4H-1,2,4-triazole], is shown to undergo reversible single-crystal-to-single-crystal (SCSC) transformations upon exposure to vapors of different guests: 1 (MeCN)⇌2 (EtOH)→3 (H2 O)⇌1 (MeCN)...
October 12, 2016: Angewandte Chemie
Haidong Li, Adam C Sedgwick, Meng Li, Richard A R Blackburn, Steven D Bull, Stéphane Arbault, Tony D James, Neso Sojic
We report a strategy for modulating the electrogenerated chemiluminescence (ECL) response by integrating a boronic acid to the chemical structure of coreactants. Excellent selectivity for d-glucose was achieved by tuning the linker length of a bis-boronic acid amine coreactant.
October 12, 2016: Chemical Communications: Chem Comm
Andrey S Orekhov, Feruza T Tuyakova, Ekaterina A Obraztsova, Artem B Loginov, Andrey L Chuvilin, Alexander N Obraztsov
Diamond is attractive for various applications due to its unique mechanical and optical properties. In particular, single crystal diamond needles with high aspect ratios and sharp apexes of nanometer size are demanded for different types of optical sensors including optically sensing tip probes for scanning microscopy. This paper reports on electron microscopy and Raman spectroscopy characterization of the diamond needles having geometrically perfect pyramidal shapes with rectangular atomically flat bases with (001) crystallography orientation, 2-200 nm sharp apexes, and with lengths from about 10-160 μm...
October 11, 2016: Nanotechnology
Quan Xu, Yao Liu, Rigu Su, Lulu Cai, Bofan Li, Yingyuan Zhang, Linzhou Zhang, Yajun Wang, Yan Wang, Neng Li, Xiao Gong, Zhipeng Gu, Yusheng Chen, Yanglan Tan, Chenbo Dong, Theruvakkattil Sreenivasan Sreeprasad
Heteroatom doped carbon dots (CDs), with high photoluminescence quantum yield (PLQY), are of keen interest in various applications such as chemical sensors, bio-imaging, electronics, and photovoltaics. Zinc, an important element assisting the electron-transfer process and an essential trace element for cells, is a promising metal dopant for CDs, which could potentially lead to multifunctional CDs. In this contribution, we report a single-step, high efficiency, hydrothermal method to synthesize Zn-doped carbon dots (Zn-CDs) with a superior PLQY...
October 11, 2016: Nanoscale
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"