Read by QxMD icon Read


Jaime Agudo-Canalejo, Reinhard Lipowsky
Biological membranes and lipid vesicles often display complex shapes with non-uniform membrane curvature. When adhesive nanoparticles with chemically uniform surfaces come into contact with such membranes, they exhibit four different engulfment regimes as recently shown by a systematic stability analysis. Depending on the local curvature of the membrane, the particles either remain free, become partially or completely engulfed by the membrane, or display bistability between free and completely engulfed states...
February 23, 2017: Soft Matter
Abhrajeet Roy, Keith Jamison, Sheng He, Steve Engel, Bin He
Binocular rivalry is a phenomenon in which perception spontaneously shifts between two different images that are dichoptically presented to the viewer. By elucidating the cortical networks responsible for these stochastic fluctuations in perception, we can potentially learn much about the neural correlates of visual awareness. We obtained concurrent EEG-fMRI data for a group of 20 healthy human subjects during the continuous presentation of dichoptic visual stimuli. The two eyes' images were tagged with different temporal frequencies so that eye specific steady-state visual evoked potential (SSVEP) signals could be extracted from the EEG data for direct comparison with changes in fMRI BOLD activity associated with binocular rivalry...
February 17, 2017: NeuroImage
Michelle Baker, Bindi S Brook, Markus R Owen
Osteoarthritis (OA) is a degenerative disease which causes pain and stiffness in joints. OA progresses through excessive degradation of joint cartilage, eventually leading to significant joint degeneration and loss of function. Cytokines, a group of cell signalling proteins, present in raised concentrations in OA joints, can be classified into pro-inflammatory and anti-inflammatory groups. They mediate cartilage degradation through several mechanisms, primarily the up-regulation of matrix metalloproteinases (MMPs), a group of collagen-degrading enzymes...
February 17, 2017: Journal of Mathematical Biology
David J Braun, Andrius Sutas, Sethu Vijayakumar
Theory predicts that parametrically excited oscillators, tuned to operate under resonant condition, are capable of large-amplitude oscillation useful in diverse applications, such as signal amplification, communication, and analog computation. However, due to amplitude saturation caused by nonlinearity, lack of robustness to model uncertainty, and limited sensitivity to parameter modulation, these oscillators require fine-tuning and strong modulation to generate robust large-amplitude oscillation. Here we present a principle of self-tuning parametric feedback excitation that alleviates the above-mentioned limitations...
January 2017: Physical Review. E
A J Alvarez-Socorro, M G Clerc, G González-Cortés, M Wilson
Multistable systems exhibit a rich front dynamics between equilibria. In one-dimensional scalar gradient systems, the spread of the fronts is proportional to the energy difference between equilibria. Fronts spreading proportionally to the energetic difference between equilibria is a characteristic of one-dimensional scalar gradient systems. Based on a simple nonvariational bistable model, we show analytically and numerically that the direction and speed of front propagation is led by nonvariational dynamics...
January 2017: Physical Review. E
Austin Reid, Frederic Lechenault, Sergio Rica, Mokhtar Adda-Bedia
Origami folded cylinders (origami bellows) have found increasingly sophisticated applications in space flight and medicine. In spite of this interest, a general understanding of the mechanics of an origami folded cylinder has been elusive. With a newly developed set of geometrical tools, we have found an analytic solution for all possible cylindrical rigid-face states of both Miura-ori and triangular tessellations. Although an idealized bellows in both of these families may have two allowed rigid-face configurations over a well-defined region, the corresponding physical device, limited by nonzero material thickness and forced to balance hinge and plate-bending energy, often cannot stably maintain a stowed configuration...
January 2017: Physical Review. E
Evgeny P Zemskov, Mikhail A Tsyganov, Werner Horsthemke
We study waves with exponentially decaying oscillatory tails in a reaction-diffusion system with linear cross diffusion. To be specific, we consider a piecewise linear approximation of the FitzHugh-Nagumo model, also known as the Bonhoeffer-van der Pol model. We focus on two types of traveling waves, namely solitary pulses that correspond to a homoclinic solution, and sequences of pulses or wave trains, i.e., a periodic solution. The effect of cross diffusion on wave profiles and speed of propagation is analyzed...
January 2017: Physical Review. E
Oleg E Shklyaev, Milton W Cole, Vincent H Crespi
Atomically thin cylindrical nanopores can change shape in response to physically adsorbed gas inside. Coupled to a gas reservoir, an initially collapsed pore can expand to allow the adsorbed gas to form concentric shells on the inner part of the pore, driven by adsorption energetics, not gas pressure. A lattice gas model describes the evolution of the nanotube pore shape and absorbed gas as a function of gas chemical potential at zero temperature. We found that narrow-enough tubes are always expanded and gas inside adsorbs in sequences of concentric shells as the gas chemical potential increases...
January 2017: Physical Review. E
Takeaki Araki, Jumpei Nagura
We studied in-plane bistable alignments of nematic liquid crystals confined by two frustrated surfaces by means of Monte Carlo simulations of the Lebwohl-Lasher spin model. The surfaces are prepared with orientational checkerboard patterns, on which the director field is locally anchored to be planar yet orthogonal between the neighboring blocks. We found the director field in the bulk tends to be aligned along the diagonal axes of the checkerboard pattern, as reported experimentally [J.-H. Kim et al., Appl...
January 2017: Physical Review. E
A Papangelo, M Ciavarella
We study the adhesion of a surface with a 'dimple' which shows a mechanism for a bi-stable adhesive system in surfaces with spaced patterns of depressions, leading to adhesion enhancement, high dissipation and hysteresis. Recent studies were limited mainly to the very short range of adhesion (the so-called JKR regime), while we generalize the study to a Maugis cohesive model. A 'generalized Tabor parameter', given by the ratio of theoretical strength to elastic modulus, multiplied by the ratio of dimple width to depth has been found...
February 2017: Journal of the Royal Society, Interface
Pavel Drábek, Peter Takáč
We consider a one-dimensional population genetics model for the advance of an advantageous gene. The model is described by the semilinear Fisher equation with unbalanced bistable non-Lipschitzian nonlinearity f(u). The "nonsmoothness" of f allows for the appearance of travelling waves with a new, more realistic profile. We study existence, uniqueness, and long-time asymptotic behavior of the solutions u(x, t), [Formula: see text]. We prove also the existence and uniqueness (up to a spatial shift) of a travelling wave U...
February 14, 2017: Journal of Mathematical Biology
Lina Wu, Xu Wang, Jianqiang Zhang, Tian Luan, Emmanuelle Bouveret, Xiaomei Yan
Cell-based two-hybrid assays have been key players in identifying pairwise interactions, yet quantitative measurement of protein-protein interactions in vivo remains challenging. Here, we show that by using relative reporter protein expression (RRPE), defined as the level of reporter expression normalized to that of the interacting protein, quantitative analysis of protein interactions in a bacterial adenylate cyclase two-hybrid (BACTH) system can be achieved. A multicolor flow cytometer was used to measure simultaneously the expression levels of one of the two putative interacting proteins and the β-galactosidase (β-gal) reporter protein upon dual immunofluorescence staining...
February 20, 2017: Analytical Chemistry
Th K Mavrogordatos, G Tancredi, M Elliott, M J Peterer, A Patterson, J Rahamim, P J Leek, E Ginossar, M H Szymańska
We explore the joint activated dynamics exhibited by two quantum degrees of freedom: a cavity mode oscillator which is strongly coupled to a superconducting qubit in the strongly coherently driven dispersive regime. Dynamical simulations and complementary measurements show a range of parameters where both the cavity and the qubit exhibit sudden simultaneous switching between two metastable states. This manifests in ensemble averaged amplitudes of both the cavity and qubit exhibiting a partial coherent cancellation...
January 27, 2017: Physical Review Letters
Jing-Wei Xiu, Guan-E Wang, Ming-Shui Yao, Chun-Chuen Yang, Chia-Her Lin, Gang Xu
Electrically bistable materials have important applications in memory, displays, switches, sensors, and quantum computation. This communication reports a metal-organic framework (MOF) material as a new type of electrically bistable material. Taking advantage of the flexible structure of MOF materials, the electrically bistable states of the MOF were reversibly modulated between its crystalline and amorphous phases. Interestingly, the material's amorphous phase exhibited anomalously higher conductivity than the crystalline phase...
February 9, 2017: Chemical Communications: Chem Comm
Kenji Yoshida, Kazuhiko Hirakawa
We have investigated the conductance of bistable gold atomic switches as a function of periodic input voltages mixed with a random noise. With increasing noise amplitude, the atomic switches biased below the threshold voltage for conductance switching start exhibiting switching in conductance between two stable states. Clear synchronization between the input and output signals is observed when an optimized noise amplitude is mixed with the periodic input voltage, even when the atomic switches are driven by an input voltage as low as approximately 10% of the threshold voltage...
February 7, 2017: Nanotechnology
Xue Zhang, Qian Xu, Yi Jiang, Ying Wang
When viewing ambiguous stimuli, people tend to perceive some interpretations more frequently than others. Such perceptual biases impose various types of constraints on visual perception, and accordingly, have been assumed to serve distinct adaptive functions. Here we demonstrated the interaction of two functionally distinct biases in bistable biological motion perception, one regulating perception based on the statistics of the environment - the viewing-from-above (VFA) bias, and the other with the potential to reduce costly errors resulting from perceptual inference - the facing-the-viewer (FTV) bias...
February 6, 2017: Scientific Reports
Joanna A Zielińska, Andrius Zukauskas, Carlota Canalias, Mehmet A Noyan, Morgan W Mitchell
We demonstrate a monolithic frequency converter incorporating up to four tuning degrees of freedom, three temperature and one strain, allowing resonance of pump and generated wavelengths simultaneous with optimal phase-matching. With a Rb-doped periodically-poled potassium titanyl phosphate (KTP) implementation, we demonstrate efficient continuous-wave second harmonic generation from 795 to 397, with low-power efficiency of 72% and high-power slope efficiency of 4.5%. The measured performance shows good agreement with theoretical modeling of the device...
January 23, 2017: Optics Express
Yang Huang, Ya Min Wu, Lei Gao
We carry out a theoretical study on optical bistability of near field intensity and transmittance in two-dimensional nonlinear composite slab. This kind of 2D composite is composed of nonlocal metal/Kerr-type dielectric core-shell inclusions randomly embedded in the host medium, and we derivate the nonlinear relation between the field intensity in the shell of inclusions and the incident field intensity with self-consistent mean field approximation. Numerical demonstration has been performed to show the viable parameter space for the bistable near field...
January 23, 2017: Optics Express
James Cumby, J Paul Attfield
The idea of the coordination polyhedron is essential to understanding chemical structure. Simple polyhedra in crystalline compounds are often deformed due to structural complexity or electronic instabilities so distortion analysis methods are useful. Here we demonstrate that analysis of the minimum bounding ellipsoid of a coordination polyhedron provides a general method for studying distortion, yielding parameters that are sensitive to various orders in metal oxide examples. Ellipsoidal analysis leads to discovery of a general switching of polyhedral distortions at symmetry-disallowed transitions in perovskites that may evidence underlying coordination bistability, and reveals a weak off-centre 'd(5) effect' for Fe(3+) ions that could be exploited in multiferroics...
February 1, 2017: Nature Communications
Johannes Maier, Martti Pärs, Tina Weller, Mukundan Thelakkat, Jürgen Köhler
Photochromic molecules can be reversibly converted between two bistable conformations by light, and are considered as promising building blocks in novel macromolecular structures for sensing and imaging techniques. We have studied individual molecular triads consisting of two strong fluorophores (perylene bisimide) that are covalently linked via a photochromic unit (dithienylcyclopentene) and distinguished between deliberate switching and spontaneous blinking. It was verified that the probability for observing deliberate light-induced switching of a single triad (rather than stochastic blinking) amounts to 0...
January 31, 2017: Scientific Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"