Read by QxMD icon Read

Motor cortex plasticity

Yin Yuan, Xiu-Yue Xu, Jie Lao, Xin Zhao
Nerve transfer is the most common treatment for total brachial plexus avulsion injury. After nerve transfer, the movement of the injured limb may be activated by certain movements of the healthy limb at the early stage of recovery, i.e., trans-hemispheric reorganization. Previous studies have focused on functional magnetic resonance imaging and changes in brain-derived neurotrophic factor and growth associated protein 43, but there have been no proteomics studies. In this study, we designed a rat model of total brachial plexus avulsion injury involving contralateral C7 nerve transfer...
February 2018: Neural Regeneration Research
Bo Wang, Shuangshuang Han
Traumatic brain injury (TBI), resulting from external force on the head, usually leads to long-term deficits in motor and cognitive functions. Inducible nitric oxide synthase (iNOS)-mediated excessive inflammation could exacerbate brain damage after TBI. The present study therefore investigated the potential neuroprotective effects of iNOS inhibition after TBI. Male C57BL/6J mice were subjected to controlled cortical impact injury and then treated with high selective iNOS inhibitor 1400W. Expression of iNOS mRNA was determined by quantitative RT-PCR...
March 20, 2018: Cerebellum
N I Martínez-Torres, D González-Tapia, M Flores-Soto, N Vázquez-Hernández, H Salgado-Ceballos, I González-Burgos
INTRODUCTION: Motor function is impaired in multiple neurological diseases associated with corticospinal tract degeneration. Motor impairment has been linked to plastic changes at both the presynaptic and postsynaptic levels. However, there is no evidence of changes in information transmission from the cortex to spinal motor neurons. METHODS: We used kainic acid to induce stereotactic lesions to the primary motor cortex of female adult rats. Fifteen days later, we evaluated motor function with the BBB scale and the rotarod and determined the density of thin, stubby, and mushroom spines of motor neurons from a thoracolumbar segment of the spinal cord...
March 16, 2018: Neurología: Publicación Oficial de la Sociedad Española de Neurología
Dexter R F Irvine
Perceptual learning, improvement in discriminative ability as a consequence of training, is one of the forms of sensory system plasticity that has driven profound changes in our conceptualization of sensory cortical function. Psychophysical and neurophysiological studies of auditory perceptual learning have indicated that the characteristics of the learning, and by implication the nature of the underlying neural changes, are highly task specific. Some studies in animals have indicated that recruitment of neurons to the population responding to the training stimuli, and hence an increase in the so-called cortical "area of representation" of those stimuli, is the substrate of improved performance, but such changes have not been observed in other studies...
March 12, 2018: Hearing Research
Per F Nordmark, Christina Ljungberg, Roland S Johansson
Transection of the median nerve typically causes lifelong restriction of fine sensory and motor skills of the affected hand despite the best available surgical treatment. Inspired by recent findings on activity-dependent structural plasticity of the adult brain, we used voxel-based morphometry to analyze the brains of 16 right-handed adults who more than two years earlier had suffered injury to the left or right median nerve followed by microsurgical repair. Healthy individuals served as matched controls. Irrespective of side of injury, we observed gray matter reductions in left ventral and right dorsal premotor cortex, and white matter reductions in commissural pathways interconnecting those motor areas...
March 14, 2018: Scientific Reports
Mary E Orczykowski, Kevin R Arndt, Lauren E Palitz, Brian C Kramer, Monica A Pessina, Adrian L Oblak, Seth P Finklestein, Farzad Mortazavi, Douglas L Rosene, Tara L Moore
Stroke results in enduring damage to the brain which is accompanied by innate neurorestorative processes, such as reorganization of surviving circuits. Nevertheless, patients are often left with permanent residual impairments. Cell based therapy is an emerging therapeutic that may function to enhance the innate neurorestorative capacity of the brain. We previously evaluated human umbilical tissue-derived cells (hUTC) in our non-human primate model of cortical injury limited to the hand area of primary motor cortex...
March 11, 2018: Experimental Neurology
Jacqueline A Palmer, Steven L Wolf, Michael R Borich
BACKGROUND: Paired associative stimulation (PAS) combining repeated pairing of electrical stimulation of a peripheral nerve with transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) can induce neuroplastic adaptations in the human brain and enhance motor learning in neurologically-intact individuals. However, the extent to which PAS is an effective technique for inducing associative plasticity and improving motor function in individuals post-stroke is unclear. OBJECTIVE: The objective of this pilot study was to investigate the effects of a single session of PAS to modulate corticomotor excitability and motor skill performance in individuals post-stroke...
2018: Restorative Neurology and Neuroscience
Alexander D Tang, William Bennett, Claire Hadrill, Jessica Collins, Barbora Fulopova, Karen Wills, Aidan Bindoff, Rohan Puri, Michael I Garry, Mark R Hinder, Jeffery J Summers, Jennifer Rodger, Alison J Canty
Repetitive transcranial magnetic stimulation (rTMS) is commonly used to modulate cortical plasticity in clinical and non-clinical populations. Clinically, rTMS is delivered to targeted regions of the cortex at high intensities (>1 T). We have previously shown that even at low intensities, rTMS induces structural and molecular plasticity in the rodent cortex. To determine whether low intensity rTMS (LI-rTMS) alters behavioural performance, daily intermittent theta burst LI-rTMS (120 mT) or sham was delivered as a priming or consolidating stimulus to mice completing 10 consecutive days of skilled reaching training...
March 5, 2018: Scientific Reports
Hikari Kirimoto, Hiroyuki Tamaki, Naufumi Otsuru, Koya Yamashiro, Hideaki Onishi, Ippei Nojima, Antonio Oliviero
Transcranial static magnetic field stimulation (tSMS) is a novel and inexpensive, non-invasive brain stimulation (NIBS) technique. Here, we performed non-invasive modulation of intra-epidermal electrical stimulation-evoked potentials (IES-EPs) by applying tSMS or sham stimulation over the primary motor (M1) and somatosensory (S1) cortices in 18 healthy volunteers for 15 min. We recorded EPs after IES before, right after, and 10 min after tSMS. The IES-EP amplitude was significantly reduced immediately after tSMS over M1, whereas tSMS over S1 and sham stimulation did not affect the IES-EP amplitude...
2018: Frontiers in Human Neuroscience
Julianne K Baarbé, Paul Yielder, Heidi Haavik, Michael W R Holmes, Bernadette Ann Murphy
The cerebellum processes pain inputs and is important for motor learning. Yet, how the cerebellum interacts with the motor cortex in individuals with recurrent pain is not clear. Functional connectivity between the cerebellum and motor cortex can be measured by a twin coil transcranial magnetic stimulation technique in which stimulation is applied to the cerebellum prior to stimulation over the motor cortex, which inhibits motor evoked potentials (MEPs) produced by motor cortex stimulation alone, called cerebellar inhibition (CBI)...
2018: PloS One
R M S Gutierrez, N A Ricci, Q R S Gomes, D L Oliveira, R S Pires
Acrobatic exercise is considered a complex motor activity and may promote motor learning and neuroplasticity. The objective of this systematic review was to verify possible plastic brain changes induced by acrobatic exercise in non-lesioned rat and mouse through the analysis of experimental studies. Manual and electronic searches were conducted in MEDLINE, EMBASE and ISI Web of Science databases, without restriction to language or publication date. Synaptogenesis and neurogenesis were selected as the primary outcomes...
February 26, 2018: Brain Structure & Function
Tribikram Thapa, Thomas Graven-Nielsen, Lucinda S Chipchase, Siobhan M Schabrun
OBJECTIVE: Homeostatic plasticity mechanisms regulate synaptic plasticity in the human brain. Impaired homeostatic plasticity may contribute to maladaptive synaptic plasticity and symptom persistence in chronic musculoskeletal pain. METHODS: We examined homeostatic plasticity in fifty individuals with chronic low back pain (cLBP) and twenty-five pain-free controls. A single block (7-min) of anodal transcranial direct current stimulation ('single tDCS'), or two subsequent blocks (7-min and 5-min separated by 3-min rest; 'double tDCS'), were randomised across two experimental sessions to confirm an excitatory response to tDCS applied alone, and evaluate homeostatic plasticity, respectively...
February 9, 2018: Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology
Elisa Galliano, Martijn Schonewille, Saša Peter, Mandy Rutteman, Simone Houtman, Dick Jaarsma, Freek E Hoebeek, Chris I De Zeeuw
In many brain regions involved in learning NMDA receptors (NMDARs) act as coincidence detectors of pre- and postsynaptic activity, mediating Hebbian plasticity. Intriguingly, the parallel fiber (PF) to Purkinje cell (PC) input in the cerebellar cortex, which is critical for procedural learning, shows virtually no postsynaptic NMDARs. Why is this? Here, we address this question by generating and testing independent transgenic lines that overexpress NMDAR containing the type 2B subunit (NR2B) specifically in PCs...
January 2018: ENeuro
Yue Li, Lei Zhang, Kehong Long, Hui Gong, Hao Lei
A growing body of literature has suggested that video game playing can induce functional and structural plasticity of the brain. The underlying mechanisms, however, remain poorly understood. In this study, functional near-infrared spectroscopy (fNIRS) was used to record prefrontal activities in 24 experienced game players when they played a massively multiplayer online battle arena (MOBA) video game, League of Legends (LOL), under naturalistic conditions. It was observed that game onset was associated with significant activations in the ventrolateral prefrontal cortex (VLPFC) and concomitant deactivations in the dorsolateral prefrontal cortex (DLPFC) and frontal pole area (FPA)...
February 16, 2018: Journal of Biophotonics
Lina Bunketorp Käll, Robert J Cooper, Johanna Wangdell, Jan Fridén, Malin Björnsdotter
BACKGROUND: Tendon transfer is a surgical technique for restoring upper limb motor control in patients with cervical spinal cord injuries (SCI), and offers a rare window into cortical neuroplasticity following regained arm and hand function. OBJECTIVE: Here, we aimed to examine neuroplasticity mechanisms related to re-established voluntary motor control of thumb flexion following tendon transfer. METHODS: We used functional Magnetic Resonance Imaging (fMRI) to test the hypothesis that restored limb control following tendon transfer is mediated by activation of that limb's area of the primary motor cortex...
2018: Restorative Neurology and Neuroscience
T Popa, C Hubsch, P James, A Richard, M Russo, S Pradeep, S Krishan, E Roze, S Meunier, A Kishore
The cerebellum can influence the responsiveness of the primary motor cortex (M1) to undergo spike timing-dependent plastic changes through a complex mechanism involving multiple relays in the cerebello-thalamo-cortical pathway. Previous TMS studies showed that cerebellar cortex excitation can block the increase in M1 excitability induced by a paired-associative stimulation (PAS), while cerebellar cortex inhibition would enhance it. Since cerebellum is known to be affected in many types of dystonia, this bidirectional modulation was assessed in 22 patients with cervical dystonia and 23 healthy controls...
February 2, 2018: Scientific Reports
Dalila Mango, Robert Nisticò, Roberto Furlan, Annamaria Finardi, Diego Centonze, Francesco Mori
Maintenance of synaptic plasticity reserve is crucial to contrast clinical deterioration in MS and PDGF plays a key role in this phenomenon. Indeed, higher cerebrospinal fluid PDGF concentration correlates with improved clinical recovery after a relapse, and the amplitude of LTP-like cortical plasticity in relapsing-remitting MS patients. However, LTP-like cortical plasticity varies depending on the individual level of inhibitory cortical circuits. Aim of this study was to explore whether PDGF-CSF concentration correlates with inhibitory cortical circuits explored by means of transcranial magnetic stimulation in patients affected by relapsing-remitting MS...
February 1, 2018: Neurochemical Research
Fuqing Zhou, Muhua Huang, Lin Wu, Yongming Tan, Jianqiang Guo, Yong Zhang, Laichang He, Honghan Gong
Objective: Advanced magnetic resonance imaging studies have shown functional plasticity or reorganization and metabolite alterations of N-acetyl aspartate in the sensorimotor cortex (SMC), a hallmark region and key brain network, in patients with cervical spondylotic myelopathy (CSM). However, the nature of perfusion in the SMC and the relationship between regional cerebral blood flow (CBF), motor function scores, and structural damage of the cervical cord in patients with CSM are not fully understood...
2018: Journal of Pain Research
Antonino Scibilia, Alfredo Conti, Giovanni Raffa, Francesca Granata, Rosaria Viola Abbritti, Stefano Maria Priola, Carmela Sindorio, Salvatore Cardali, Antonino Germanò
Objectives Repetitive transcranial magnetic stimulation (rTMS) is a promising tool for treatment of chronic pain. We describe the use of navigated rTMS to treat a patient affected by phantom limb pain (PLP) and to modulate brain functional connectivity. We reviewed the literature on the use of rTMS as a tool for relieving central pain by promoting brain plasticity. Methods A 69-year-old patient came to our observation blaming severe pain (Visual Analog scale, VAS, score 9) to a phantom right lower limb. We mapped left primary motor area (PMA) by navigated TMS and assessed connectivity with resting-state functional MR (rsfMR)...
January 30, 2018: Neurological Research
Zhen Ni, Sang Jin Kim, Nicolas Phielipp, Soumya Ghosh, Kaviraja Udupa, Carolyn A Gunraj, Utpal Saha, Mojgan Hodaie, Suneil K Kalia, Andres M Lozano, Darrin J Lee, Elena Moro, Alfonso Fasano, Mark Hallett, Anthony E Lang, Robert Chen
OBJECTIVE: Internal globus pallidus (GPi) deep brain stimulation (DBS) relieves symptoms in dystonia patients. However, the physiological effects produced by GPi DBS are not fully understood. In particular, how a single-pulse GPi DBS changes cortical circuits has never been investigated. We studied the modulation of motor cortical excitability and plasticity with single-pulse GPi DBS in dystonia patients with bilateral implantation of GPi DBS. METHODS: The cortical evoked potentials from DBS were recorded with electroencephalography...
January 25, 2018: Annals of Neurology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"