Read by QxMD icon Read

plant biotechnology

Takeshi Takamatsu, Marouane Baslam, Takuya Inomata, Kazusato Oikawa, Kimiko Itoh, Takayuki Ohnishi, Tetsu Kinoshita, Toshiaki Mitsui
Chloroplasts, which perform photosynthesis, are one of the most important organelles in green plants and algae. Chloroplasts maintain an independent genome that includes important genes encoding their photosynthetic machinery and various housekeeping functions. Owing to its non-recombinant nature, low mutation rates, and uniparental inheritance, the chloroplast genome (plastome) can give insights into plant evolution and ecology and in the development of biotechnological and breeding applications. However, efficient methods to obtain high-quality chloroplast DNA (cpDNA) are currently not available, impeding powerful sequencing and further functional genomics research...
2018: Frontiers in Plant Science
Federico Sabbadin, Giovanna Pesante, Luisa Elias, Katrin Besser, Yi Li, Clare Steele-King, Meg Stark, Deborah A Rathbone, Adam A Dowle, Rachel Bates, J Reuben Shipway, Simon M Cragg, Neil C Bruce, Simon J McQueen-Mason
Lignocellulose forms the structural framework of woody plant biomass and represents the most abundant carbon source in the biosphere. Turnover of woody biomass is a critical component of the global carbon cycle, and the enzymes involved are of increasing industrial importance as industry moves away from fossil fuels to renewable carbon resources. Shipworms are marine bivalve molluscs that digest wood and play a key role in global carbon cycling by processing plant biomass in the oceans. Previous studies suggest that wood digestion in shipworms is dominated by enzymes produced by endosymbiotic bacteria found in the animal's gills, while little is known about the identity and function of endogenous enzymes produced by shipworms...
2018: Biotechnology for Biofuels
Willem Stock, Eveline Pinseel, Sam De Decker, Josefin Sefbom, Lander Blommaert, Olga Chepurnova, Koen Sabbe, Wim Vyverman
Diatoms constitute the most diverse group of microalgae and have long been recognised for their large biotechnological potential. In the wake of growing research interest in new model species and development of commercial applications, there is a pressing need for long-term preservation of diatom strains. While cryopreservation using dimethylsulfoxide (DMSO) as a cryoprotective agent is the preferred method for long-term strain preservation, many diatom species cannot be successfully cryopreserved using DMSO...
March 9, 2018: Scientific Reports
A A Slavokhotova, A A Shelenkov, Ya A Andreev, T I Odintsova
Plant antimicrobial peptides represent one of the evolutionarily oldest innate immunity components providing the first line of host defense to pathogen attacks. This review is dedicated to a small, currently actively studied family of hevein-like peptides that can be found in various monocot and dicot plants. The review thoroughly describes all known peptides belonging to this family including data on their structures, functions, and antimicrobial activity. The main features allowing to assign these peptides to a separate family are given, and the specific characteristics of each peptide are described...
December 2017: Biochemistry. Biokhimii︠a︡
Diego Hidalgo, Raul Sanchez, Liliana Lalaleo, Mercedes Bonfill, Purificacion Corchete, Javier Palazon
BACKGROUND: Plant biofactories are biotechnological platforms based on plant cell and organ cultures used for the production of pharmaceuticals and biopharmaceuticals, although to date only a few of these systems have successfully been implemented at an industrial level. Metabolic engineering is possibly the most straightforward strategy to boost pharmaceutical production in plant biofactories, but social opposition to the use of GMOs means empirical approaches are still being used. Plant secondary metabolism involves thousands of different enzymes, some of which catalyze specific reactions, giving one product from a particular substrate, whereas others can yield multiple products from the same substrate...
March 9, 2018: Current Medicinal Chemistry
Sung Don Lim, Won Cheol Yim, Degao Liu, Rongbin Hu, Xiaohan Yang, John C Cushman
Strategies for improving plant size are critical targets for plant biotechnology to increase vegetative biomass or reproductive yield. To improve biomass production, a codon-optimized helix-loop-helix transcription factor (VvCEB1opt ) from wine grape was overexpressed in Arabidopsis thaliana resulting in significantly increased leaf number, leaf and rosette area, fresh weight, and dry weight. Cell size, but typically not cell number, was increased in all tissues resulting in increased vegetative biomass and reproductive organ size, number, and seed yield...
March 9, 2018: Plant Biotechnology Journal
Ayan Das, Prithwi Ghosh, Sampa Das
Transgenic Brassica juncea plants expressing Colocasia esculenta tuber agglutinin (CEA) shows the non-allergenic nature of the expressed protein leading to enhanced mortality and reduced fecundity of mustard aphid-Lipaphis erysimi. Lipaphis erysimi (common name: mustard aphid) is the most devastating sucking insect pest of Indian mustard (Brassica juncea L.). Colocasia esculenta tuber agglutinin (CEA), a GNA (Galanthus nivalis agglutinin)-related lectin has previously been reported by the present group to be effective against a wide array of hemipteran insects in artificial diet-based bioassays...
March 8, 2018: Plant Cell Reports
Mouna Lamaoui, Martin Jemo, Raju Datla, Faouzi Bekkaoui
Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%...
2018: Frontiers in Chemistry
Zhenzhen Hao, Pichang Gong, Chaoying He, Jinxing Lin
Peptide aptamers - artificial short peptides with specific binding affinity for target molecules - can be used to interfere with protein functions and protein-protein interactions in plant cells. Therefore, peptide aptamers have emerged as a new, powerful tool with high efficiency and specificity and wide applications in functional genomics and plant biotechnology.
March 5, 2018: Trends in Plant Science
Deborah Traversi, Ilaria Gorrasi, Cristina Pignata, Raffaella Degan, Elisa Anedda, Giulia Carletto, Greta Vercellino, Stefania Fornasero, Antonino Bertino, Francesca Filippi, Maria Gullo, Giorgio Gilli
Anaerobic digestion is a consolidated biotechnology able to produce renewable energy from biomasses. In the European countries, quick growth of biogas production from different organic matrices including wastes has been observed. In relation to the characteristics and quantity of the anaerobic digestion of feedstock, there are different technologies, advantages and criticisms. An accurate occupational risk assessment and development of management tools for green jobs involved in the anaerobic digestion plants are due...
March 5, 2018: Environment International
Lia R Valeeva, Chuluuntsetseg Nyamsuren, Margarita R Sharipova, Eugene V Shakirov
Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo -inositol hexakisphosphate (phytate), which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake...
2018: Frontiers in Plant Science
Jin-Ling Yang, Zong-Feng Hu, Ting-Ting Zhang, An-Di Gu, Ting Gong, Ping Zhu
As the main bioactive constituents of Panax species, ginsenosides possess a wide range of notable medicinal effects such as anti-cancer, anti-oxidative, antiaging, anti-inflammatory, anti-apoptotic and neuroprotective activities. However, the increasing medical demand for ginsenosides cannot be met due to the limited resource of Panax species and the low contents of ginsenosides. In recent years, biotechnological approaches have been utilized to increase the production of ginsenosides by regulating the key enzymes of ginsenoside biosynthesis, while synthetic biology strategies have been adopted to produce ginsenosides by introducing these genes into yeast...
March 6, 2018: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
Dan Yu, Ellen Hornung, Tim Iven, Ivo Feussner
Background: Biotechnology enables the production of high-valued industrial feedstocks from plant seed oil. The plant-derived wax esters with long-chain monounsaturated acyl moieties, like oleyl oleate, have favorite properties for lubrication. For biosynthesis of wax esters using acyl-CoA substrates, expressions of a fatty acyl reductase (FAR) and a wax synthase (WS) in seeds are sufficient. Results: For optimization of the enzymatic activity and subcellular localization of wax ester synthesis enzymes, two fusion proteins were created, which showed wax ester-forming activities in Saccharomyces cerevisiae ...
2018: Biotechnology for Biofuels
Anna Bastet, Baptiste Lederer, Nathalie Giovinazzo, Xavier Arnoux, Sylvie German-Retana, Catherine Reinbold, Véronique Brault, Damien Garcia, Samia Djennane, Sophie Gersch, Olivier Lemaire, Christophe Robaglia, Jean-Luc Gallois
To infect plants, viruses rely heavily on their host's machinery. Plant genetic resistances based on host factor modifications can be found among existing natural variability and are widely used for some but not all crops. While biotechnology can supply for the lack of natural resistance alleles, new strategies need to be developed to increase resistance spectra and durability without impairing plant development. Here, we assess how the targeted allele modification of the Arabidopsis thaliana translation initiation factor eIF4E1 can lead to broad and efficient resistance to the major group of potyviruses...
March 5, 2018: Plant Biotechnology Journal
Aleksandra Koźmińska, Alina Wiszniewska, Ewa Hanus-Fajerska, Ewa Muszyńska
Avoidance and reduction of soil contamination with heavy metals is one of the most serious global challenges. Nowadays, science offers us new opportunities of utilizing plants to extract toxic elements from the soil by means of phytoremediation. Plant abilities to uptake, translocate, and transform heavy metals, as well as to limit their toxicity, may be significantly enhanced via genetic engineering. This paper provides a comprehensive review of recent strategies aimed at the improvement of plant phytoremediation potential using plant transformation and employing current achievements in nuclear and cytoplasmic genome transformation...
2018: Plant Biotechnology Reports
Roman Holic, Yang Xu, Kristian Mark P Caldo, Stacy D Singer, Catherine J Field, Randall J Weselake, Guanqun Chen
Punicic acid (PuA; 18: 3Δ9cis,11trans,13cis ) is an unusual 18-carbon fatty acid bearing three conjugated double bonds. It has been shown to exhibit a myriad of beneficial bioactivities including anti-cancer, anti-diabetes, anti-obesity, antioxidant, and anti-inflammatory properties. Pomegranate (Punica granatum) seed oil contains approximately 80% PuA and is currently the major natural source of this remarkable fatty acid. While both PuA and pomegranate seed oil have been used as functional ingredients in foods and cosmetics for some time, their value in pharmaceutical/medical and industrial applications are presently under further exploration...
March 3, 2018: Applied Microbiology and Biotechnology
Benoît Lacroix, Vitaly Citovsky
Besides the massive gene transfer from organelles to the nuclear genomes, which occurred during the early evolution of eukaryote lineages, the importance of horizontal gene transfer (HGT) in eukaryotes remains controversial. Yet, increasing amounts of genomic data reveal many cases of bacterium-to-eukaryote HGT that likely represent a significant force in adaptive evolution of eukaryotic species. However, DNA transfer involved in genetic transformation of plants by Agrobacterium species has traditionally been considered as the unique example of natural DNA transfer and integration into eukaryotic genomes...
March 3, 2018: Current Topics in Microbiology and Immunology
Jean-Baptiste Guyon, Valérie Vergé, Philippe Schatt, Jean-Claude Lozano, Marion Liennard, François-Yves Bouget
Microalgae are promising sources for the sustainable production of compounds of interest for biotechnologies. Compared to higher plants, microalgae have a faster growth rate and can be grown in industrial photobioreactors. The microalgae biomass contains specific metabolites of high added value for biotechnology such as lipids, polysaccharides or carotenoid pigments. Studying carotenogenesis is important for deciphering the mechanisms of adaptation to stress tolerance as well as for biotechnological production...
February 28, 2018: Marine Drugs
Joaquín Clúa, Carla Roda, María Eugenia Zanetti, Flavio A Blanco
The root nodule symbiosis established between legumes and rhizobia is an exquisite biological interaction responsible for fixing a significant amount of nitrogen in terrestrial ecosystems. The success of this interaction depends on the recognition of the right partner by the plant within the richest microbial ecosystems on Earth, the soil. Recent metagenomic studies of the soil biome have revealed its complexity, which includes microorganisms that affect plant fitness and growth in a beneficial, harmful, or neutral manner...
February 27, 2018: Genes
Kourosh Mohammadi, Ali Movahedi, Samaneh Sadat Maleki, Weibo Sun, Jiaxin Zhang, Amir Almasi Zadeh Yaghuti, Saeed Nourmohammadi, Qiang Zhuge
Drought and salinity are two main abiotic stressors that can disrupt plant growth and survival. Various biotechnological approaches have been used to alleviate the problem of drought stress by improving water stress resistance in forestry and agriculture. The drought sensitive 1 (DRS1) gene acts as a regulator of drought stress, identified in human, yeast and some model plants, such as Arabidopsis thaliana, but there have been no reports of DRS1 transformation in poplar plants to date. In this study, we transformed the DRS1 gene from Populus trichocarpa into Populus deltoides × Populus euramericana 'Nanlin895' using Agrobacterium tumefaciens-mediated transformation...
February 21, 2018: Plant Physiology and Biochemistry: PPB
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"