Read by QxMD icon Read


Chye Soi Moi, Chia Kin Yen, Khuen Yen Ng, Koh Rhun Yian
Protein misfolding and aggregation have been considered the common pathological hallmarks for a number of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). These abnormal proteins aggregation damage mitochondria and induce oxidative stress and resulting neuronal cell death. Prolong neuronal damage activates microglia and astrocytes, development of inflammation reaction and further promotes neurodegeneration. Thus, elimination of abnormal proteins aggregation without eliciting any adverse effects are the main treatment strategies...
March 15, 2018: CNS & Neurological Disorders Drug Targets
Abraham Neelankal John, Ramesh Ram, Fang-Xu Jiang
Type 2 diabetes (T2D) is a global health issue and dedifferentiation plays underlying causes in the pathophysiology of T2D; however, there is a lack of understanding in the mechanism. Dedifferentiation results from the loss of function of pancreatic β-cells alongside a reduction in essential transcription factors under various physiological stressors. Our study aimed to establish db/db as an animal model for dedifferentiation by using RNA sequencing to compare the gene expression profile in islets isolated from wild-type, db/+ and db/db mice, and qPCR was performed to validate those significant genes...
March 14, 2018: Endocrine Pathology
Magdalena Dabrowska, Wojciech Juzwa, Wlodzimierz J Krzyzosiak, Marta Olejniczak
Huntington's disease (HD) is a progressive autosomal dominant neurodegenerative disorder caused by the expansion of CAG repeats in the first exon of the huntingtin gene ( HTT ). The accumulation of polyglutamine-rich huntingtin proteins affects various cellular functions and causes selective degeneration of neurons in the striatum. Therapeutic strategies used to date to silence the expression of mutant HTT include antisense oligonucleotides, RNA interference-based approaches and, recently, genome editing with the CRISPR/Cas9 system...
2018: Frontiers in Neuroscience
Katarína Skalická, Gabriela Hrčková, Anita Vaská, Ágnes Baranyaiová, László Kovács
AIM: To evaluate the genetic defects of ciliary genes causing the loss of primary cilium in autosomal dominant polycystic kidney disease (ADPKD). METHODS: We analyzed 191 structural and functional genes of the primary cilium using next-generation sequencing analysis. We analyzed the kidney samples, which were obtained from 7 patients with ADPKD who underwent nephrectomy. Each sample contained polycystic kidney tissue and matched normal kidney tissue. RESULTS: In our study, we identified genetic defects in the 5 to 15 genes in each ADPKD sample...
March 6, 2018: World Journal of Nephrology
Marco Caterino, Tiziana Squillaro, Daniela Montesarchio, Antonio Giordano, Concetta Giancola, Mariarosa A B Melone
Huntington's disease is a dreadful, incurable disorder. It springs from the autosomal dominant mutation in the first exon of the HTT gene, which encodes for the huntingtin protein (HTT) and results in progressive neurodegeneration. Thus far, all the attempted approaches to tackle the mutant HTT-induced toxicity causing this disease have failed. The mutant protein comes with the aberrantly expanded poly-glutamine tract. It is primarily to blame for the build-up of β-amyloid-like HTT aggregates, deleterious once broadened beyond the critical ∼35-37 repeats threshold...
March 8, 2018: Neuropharmacology
Xuke Han, Huangan Wu, Ping Yin, Zeqin Chen, Xiaohua Cao, Yanhong Duan, Jian Xu, Lixing Lao, Shifen Xu
OBJECTIVE: The study aimed to determine the effect of electroacupuncture (EA) on Wistar Kyoto (WKY) depressive model rats and explore the possible mechanism of EA on hippocampal CA1 region neuronal synaptic plasticity. METHODS: The male WKY rats were randomized to three experimental groups (EA, Sham EA, and Model group, n = 8/group), and Wistar rats as the normal control group (n = 8). EA treatment was administered once daily for 3 weeks at acupuncture points Baihui (GV20) and Yintang (EX-HN3)...
March 7, 2018: Brain Research Bulletin
Frank Matthes, Serena Massari, Anna Bochicchio, Kenji Schorpp, Judith Schilling, Stephanie Weber, Nina Offermann, Jenny Desantis, Erich E Wanker, Paolo Carloni, Kamyar Hadian, Oriana Tabarrini, Giulia Rossetti, Sybille Krau Szlig
Expanded CAG trinucleotide repeats in Huntington's disease (HD) are causative for neurotoxicity. Not only does the mutant CAG-repeat RNA encode for neurotoxic polyglutamine proteins, but also it can lead to a toxic gain-of-function by aberrantly recruiting RNA-binding proteins. One of these is the MID1 protein, which induces aberrant Huntingtin (HTT) protein translation upon binding. Here we have identified a set of CAG repeat binder candidates by in silico methods. One of those, furamidine, reduces the binding of HTT mRNA to MID1 and other target proteins in vitro...
March 5, 2018: ACS Chemical Neuroscience
Jana Miniarikova, Melvin M Evers, Pavlina Konstantinova
The single mutation underlying the fatal neuropathology of Huntington's disease (HD) is a CAG triplet expansion in exon 1 of the huntingtin (HTT) gene, which gives rise to a toxic mutant HTT protein. There have been a number of not yet successful therapeutic advances in the treatment of HD. The current excitement in the HD field is due to the recent development of therapies targeting the culprit of HD either at the DNA or RNA level to reduce the overall mutant HTT protein. In this review, we briefly describe short-term and long-term HTT-lowering strategies targeting HTT transcripts...
February 8, 2018: Molecular Therapy: the Journal of the American Society of Gene Therapy
Olivia Monteiro, Changwei Chen, Ryan Bingham, Argyrides Argyrou, Rachel Buxton, Christina Pancevac Jönsson, Emma Jones, Angela Bridges, Kelly Gatfield, Sybille Krauß, Jeremy Lambert, Rosamund Langston, Susann Schweiger, Iain Uings
Expression of mutant Huntingtin (HTT) protein is central to the pathophysiology of Huntington's Disease (HD). The E3 ubiquitin ligase MID1 appears to have a key role in facilitating translation of the mutant HTT mRNA suggesting that interference with the function of this complex could be an attractive therapeutic approach. Here we describe a peptide that is able to disrupt the interaction between MID1 and the α4 protein, a regulatory subunit of protein phosphatase 2A (PP2A). By fusing this peptide to a sequence from the HIV-TAT protein we demonstrate that the peptide can disrupt the interaction within cells and show that this results in a decrease in levels of ribosomal S6 phosphorylation and HTT expression in cultures of cerebellar granule neurones derived from HdhQ111/Q7 mice...
February 27, 2018: Neuroscience Letters
Eris Bidollari, Giovannina Rotundo, Daniela Ferrari, Ornella Candido, Laura Bernardini, Federica Consoli, Alessandro De Luca, Iolanda Santimone, Giuseppe Lamorte, Andrea Ilari, Ferdinando Squitieri, Angelo Luigi Vescovi, Jessica Rosati
Huntington's disease (HD) is an incurable, autosomal dominant, hereditary neurodegenerative disorder that typically manifests itself in midlife. This pathology is linked to the deregulation of multiple, as yet unknown, cellular processes starting before HD onset. A human iPS cell line was generated from skin fibroblasts of a subject at the presymptomatic life stage, carrying a polyglutamine expansion in HTT gene codifying Huntingtin protein. The iPSC line contained the expected CAG expansion, expressed the expected pluripotency markers, displayed in vivo differentiation potential to the three germ layers and had a normal karyotype...
February 21, 2018: Stem Cell Research
Marina Kovalenko, Austen Milnerwood, James Giordano, Jason St Claire, Jolene R Guide, Mary Stromberg, Tammy Gillis, Ellen Sapp, Marian DiFiglia, Marcy E MacDonald, Jeffrey B Carroll, Jong-Min Lee, Susan Tappan, Lynn Raymond, Vanessa C Wheeler
BACKGROUND: Successful disease-modifying therapy for Huntington's disease (HD) will require therapeutic intervention early in the pathogenic process. Achieving this goal requires identifying phenotypes that are proximal to the HTT CAG repeat expansion. OBJECTIVE: To use Htt CAG knock-in mice, precise genetic replicas of the HTT mutation in patients, as models to study proximal disease events. METHODS: Using cohorts of B6J.HttQ111/+ mice from 2 to 18 months of age, we analyzed pathological markers, including immunohistochemistry, brain regional volumes and cortical thickness, CAG instability, electron microscopy of striatal synapses, and acute slice electrophysiology to record glutamatergic transmission at striatal synapses...
2018: Journal of Huntington's Disease
Catherine Kielar, A Jennifer Morton
The threshold of CAG repeat expansion in the HTT gene that causes HD is 36 CAG repeats, although 'superlong' expansions are found in individual neurons in postmortem brains. Previously, we showed that, compared to mice with <250 CAG repeats, onset of disease in R6/2 mice carrying superlong (>440) CAG repeat expansions was delayed, and disease progression was slower. Inclusion pathology also differed from 250 CAG repeat mice, being dominated by a novel kind of extranuclear neuronal inclusion (nENNI) that resembles a class of aggregate seen in patients with the adult onset form of HD...
2018: Journal of Huntington's Disease
Qiang Guo, Bin Huang, Jingdong Cheng, Manuel Seefelder, Tatjana Engler, Günter Pfeifer, Patrick Oeckl, Markus Otto, Franziska Moser, Melanie Maurer, Alexander Pautsch, Wolfgang Baumeister, Rubén Fernández-Busnadiego, Stefan Kochanek
Huntingtin (HTT) is a large (348 kDa) protein that is essential for embryonic development and is involved in diverse cellular activities such as vesicular transport, endocytosis, autophagy and the regulation of transcription. Although an integrative understanding of the biological functions of HTT is lacking, the large number of identified HTT interactors suggests that it serves as a protein-protein interaction hub. Furthermore, Huntington's disease is caused by a mutation in the HTT gene, resulting in a pathogenic expansion of a polyglutamine repeat at the amino terminus of HTT...
February 21, 2018: Nature
Xiao Zhou, Gang Li, Anna Kaplan, Michael M Gaschler, Xiaoyan Zhang, Zhipeng Hou, Jiang Mali, Roseann Zott, Serge Cremers, Brent R Stockwell, Wenzhen Duan
Huntington's disease (HD) is caused by a cytosine-adenine-guanine (CAG) trinucleotide repeat expansion in the huntingtin (HTT) gene encoding an elongated polyglutamine tract within the N-terminal of the Huntingtin protein (Htt) and leads to Htt misfolding, aberrant protein aggregation, and progressive appearance of disease symptoms. Chronic activation of endoplasmic reticulum (ER) stress by mutant Htt (mHtt) results in cellular dysfunction and ultimately cell death. Protein disulfide isomerase (PDI) is a chaperone protein located in the ER...
February 16, 2018: Human Molecular Genetics
Deepak Mav, Ruchir R Shah, Brian E Howard, Scott S Auerbach, Pierre R Bushel, Jennifer B Collins, David L Gerhold, Richard S Judson, Agnes L Karmaus, Elizabeth A Maull, Donna L Mendrick, B Alex Merrick, Nisha S Sipes, Daniel Svoboda, Richard S Paules
Changes in gene expression can help reveal the mechanisms of disease processes and the mode of action for toxicities and adverse effects on cellular responses induced by exposures to chemicals, drugs and environment agents. The U.S. Tox21 Federal collaboration, which currently quantifies the biological effects of nearly 10,000 chemicals via quantitative high-throughput screening(qHTS) in in vitro model systems, is now making an effort to incorporate gene expression profiling into the existing battery of assays...
2018: PloS One
Eunseon Oh, Yuhong Liu, Mahesh V Sonar, Diane Merry, Eric Wickstrom
Huntington's disease (HD) is an autosomal-dominant neurodegenerative genetic disorder caused by CAG repeat expansion in exon 1 of the HTT gene. Expression of the mutant gene results in the production of a neurotoxic polyglutamine (polyQ)-expanded huntingtin (Htt) protein. Clinical trials of knockdown therapy of mutant polyglutamine-encoding HTT mRNA in Huntington's disease (HD) have begun. To measure HTT mRNA knockdown effectiveness in human cells, we utilized a fluorescent hybridization imaging agent specific to the region encompassing the human HTT mRNA initiation codon...
February 16, 2018: Bioconjugate Chemistry
Karolina Pierzynowska, Lidia Gaffke, Aleksandra Hać, Jagoda Mantej, Natalia Niedziałek, Joanna Brokowska, Grzegorz Węgrzyn
Huntington's disease (HD) is a monogenic disorder, caused by mutations in the HTT gene which result in expansion of CAG triplets. The product of the mutated gene is misfolded huntingtin protein that forms aggregates leading to impairment of neuronal function, neurodegeneration, motor abnormalities and cognitive deficits. No effective cure is currently available for HD. Here we studied effects of genistein (trihydroxyisoflavone) on a HD cellular model consisting of HEK-293 cells transfected with a plasmid bearing mutated HTT gene...
February 12, 2018: Neuromolecular Medicine
Chuen-Lin Huang, Kaw-Chen Wang, Ying-Chen Yang, Chun-Tang Chiou, Chia-Hui Tan, Yun-Lian Lin, Nai-Kuei Huang
BACKGROUND: According to the Compendium of Materia Medica, Gastrodia elata (GE) Blume is a top-grade herbal medicine frequently used to treat dizziness, headaches, tetanus, and epilepsy, suggesting that it affects neurological functions. Although studies have supported its effects in preventing diverse neurodegenerations such as Huntington's disease (HD), its mechanisms require further investigation. PURPOSE: To investigate the ability of the molecular mechanism of GE to prevent mutant huntingtin (mHTT) protein aggregation by focusing on mitochondrial function and biogenesis, which have been proposed as the therapeutic targets of HD...
January 15, 2018: Phytomedicine: International Journal of Phytotherapy and Phytopharmacology
Rajeev Krishnadas, Sally-Ann Cooper, Alice Nicol, Sally Pimlott, Sarita Soni, Anthony J Holland, Laura McArthur, Jonathan Cavanagh
Prader-Willi syndrome (PWS) is a rare condition because of the deletion of paternal chromosomal material (del PWS), or a maternal uniparental disomy (mUPD PWS), at 15q11-13. Affective psychosis is more prevalent in mUPD PWS. We investigated the relationship between the two PWS genetic variants and brain-stem serotonin transporter (5-HTT) availability in adult humans. Mean brain-stem 5-HTT availability determined by [123I]-beta-CIT single photon emission tomography was lower in eight adults with mUPD PWS compared with nine adults with del PWS (mean difference -0...
January 2018: British Journal of Psychiatry: the Journal of Mental Science
Huanhuan Luo, Liying Cao, Xuan Liang, Ana Du, Ting Peng, He Li
In neurodegenerative diseases, pathogenic proteins tend to misfold and form aggregates that are difficult to remove and able to induce excessive endoplasmic reticulum (ER) stress, leading to neuronal injury and apoptosis. Homocysteine-induced endoplasmic reticulum protein (Herp), an E3 ubiquitin ligase, is an important early marker of ER stress and is involved in the ubiquitination and degradation of many neurodegenerative proteins. However, in Huntington's disease (HD), a typical polyglutamine disease, whether Herp is also involved in the metabolism and degradation of the pathogenic protein, mutant huntingtin, has not been reported...
February 12, 2018: Molecular Neurobiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"