Read by QxMD icon Read


Teruyo Nakatani, Tiffany Chen, Joshua Johnson, Jennifer J Westendorf, Nicola C Partridge
Histone deacetylase 4 (Hdac4) is known to control chondrocyte hypertrophy and bone formation. We have previously shown that parathyroid hormone (PTH) regulates many aspects of Hdac4 function in osteoblastic cells in vitro; however, in vivo confirmation was previously precluded by pre-weaning lethality of the Hdac4 deficient mice. To analyze the function of Hdac4 in bone in mature animals, we generated mice with osteoblast lineage-specific knockout of Hdac4 (Hdac4ob-/- ) by crossing transgenic mice expressing Cre recombinase under the control of a 2...
March 15, 2018: Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research
Ho-Jung Choi, Yeon-Hee Kim
The Cre/loxP-δ-integration system was developed to allow sequential and simultaneous integration of a multiple gene expression cassette in Saccharomyces cerevisiae . To allow repeated integrations, the reusable CgMARKER carrying loxP sequences was used, and the integrated CgMARKER was efficiently removed by inducing Cre recombinase. The XYLP and XYLB genes encoding endoxylanase and β-xylosidase, respectively, were used as model genes for xylan metabolism in this system, and the copy number of these genes was increased to 15...
March 15, 2018: Journal of Microbiology and Biotechnology
Ileana Ruxandra Botusan, Xiaowei Zheng, Sampath Narayanan, Jacob Grünler, Vivekananda Gupta Sunkari, Freja S Calissendorff, Ishrath Ansurudeen, Christopher Illies, Johan Svensson, John-Olov Jansson, Claes Ohlsson, Kerstin Brismar, Sergiu-Bogdan Catrina
OBJECTIVE: IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes)...
2018: PloS One
Yanjie Zhang, Qiuyue Guan, Yin Liu, Yuwei Zhang, Yulong Chen, Jinglu Chen, Yulan Liu, Zhiguang Su
Hepatic gluconeogenesis is essential to maintain the blood glucose levels, and its abnormal activation leads to hyperglycemia and type 2 diabetes. However, the molecular mechanisms in the regulation of hepatic gluconeogenesis remain to be fully defined. In this study, using murine hepatocytes and a liver-specific knockout mouse model, we explored the physiological role of nuclear factor Y (NF-Y) in regulating hepatic glucose metabolism and the underlying mechanism. We found that NF-Y targets the gluconeogenesis pathway in the liver...
March 12, 2018: Journal of Biological Chemistry
Hiroki Takagi, Yuji Seta, Shinji Kataoka, Mitsushiro Nakatomi, Takashi Toyono, Tatsuo Kawamoto
The gustatory cells in taste buds have been identified as paraneuronal; they possess characteristics of both neuronal and epithelial cells. Like neurons, they form synapses, store and release transmitters, and are capable of generating an action potential. Like epithelial cells, taste cells have a limited life span and are regularly replaced throughout life. However, little is known about the molecular mechanisms that regulate taste cell genesis and differentiation. In the present study, to begin to understand these mechanisms, we investigated the role of Mash1-positive cells in regulating adult taste bud cell differentiation through the loss of Mash1-positive cells using the Cre-loxP system...
March 10, 2018: Anatomical Science International
Kristin M Whitworth, Raissa Cecil, Joshua A Benne, Bethany K Redel, Lee D Spate, Melissa S Samuel, Randall S Prather, Kevin D Wells
Genetically engineered pigs are often created with a targeting vector that contains a loxP flanked selectable marker like neomycin. The Cre-loxP recombinase system can be used to remove the selectable marker gene from the resulting offspring or cell line. Here is described a new method to remove a loxP flanked neomycin cassette by direct zygote injection of an mRNA encoding Cre recombinase. The optimal concentration of mRNA was determined to be 10 ng/μL when compared to 2 and 100 ng/μL (P < 0.0001)...
March 7, 2018: Transgenic Research
Mei Xu, Xiaoling Xie, Xuhui Dong, Guoqing Liang, Lin Gan
LHX3, a LIM-homeodomain transcription factor, is broadly expressed in the developing pituitary, spinal cord, medulla, retina and inner ear, and plays essential roles during embryonic development. Mice with homozygous Lhx3 null mutation exhibit failure in the formation of pituitary gland and die perinatally. To facilitate the functional study of Lhx3 in mice, we engineered and characterized two novel Lhx3 mouse strains: Lhx3GFP reporter knock-in and Lhx3loxP conditional knockout mice. Co-immunolabeling of LHX3 and GFP shows that the expression pattern of the knock-in GFP reporter recapitulates that of endogenous LHX3 in cochlea, vestibule, retina, and spinal cord...
March 6, 2018: Genesis: the Journal of Genetics and Development
Tomoko Matsuzaki, Huan Wang, Yukio Imamura, Shunya Kondo, Shuichiro Ogawa, Makoto Noda
Reck encodes a membrane-anchored glycoprotein implicated in the regulation of extracellular metalloproteinases, Notch-signaling, and Wnt7-signaling and shown to play critical roles in embryogenesis and tumor suppression. Precise mechanisms of its actions in vivo, however, remain largely unknown. By homologous recombination, we generated a new Reck allele, ReckCreERT2 (MGI symbol: Reck<tm3.1(cre/ERT2)Noda>). This allele is defective in terms of Reck function but expected to induce loxP-mediated recombination in the cells committed to express Reck...
March 6, 2018: Genesis: the Journal of Genetics and Development
Yuichi Tsuchiya, Michiko Saito, Hiroshi Kadokura, Jun-Ichi Miyazaki, Fumi Tashiro, Yusuke Imagawa, Takao Iwawaki, Kenji Kohno
In mammalian pancreatic β cells, the IRE1α-XBP1 pathway is constitutively and highly activated under physiological conditions. To elucidate the precise role of this pathway, we constructed β cell-specific Ire1α conditional knockout (CKO) mice and established insulinoma cell lines in which Ire1α was deleted using the Cre-loxP system. Ire1α CKO mice showed the typical diabetic phenotype including impaired glycemic control and defects in insulin biosynthesis postnatally at 4-20 weeks. Ire1α deletion in pancreatic β cells in mice and insulinoma cells resulted in decreased insulin secretion, decreased insulin and proinsulin contents in cells, and decreased oxidative folding of proinsulin along with decreased expression of five protein disulfide isomerases (PDIs): PDI, PDIR, P5, ERp44, and ERp46...
March 5, 2018: Journal of Cell Biology
Ying Xia, Xue-Juan Zhou, Wen-Qing Gu, Yan-Yan Zhao, Xiao Xiao, Xiao-Chun Bai, Jun Liu, Ming Li
OBJECTIVE: To establish a method for gene delivery in murine renal tissue using lentivirus vector encoding miR-483-5p. METHODS: Thirty-five C57BL/6J mice were randomly divided into control group, low-dose treatment group (5 µL each kidney) , and high?dose treatment group (20 µL each kidney), and in the latter two groups, the lentivirus vector encoding miR-483-5p were injected in the renal cortex. The tissue samples were collected at 7 and 21 days after the injection...
February 20, 2018: Nan Fang Yi Ke da Xue Xue Bao, Journal of Southern Medical University
Kevin J Kauffman, Matthias A Oberli, J Robert Dorkin, Juan E Hurtado, James C Kaczmarek, Shivani Bhadani, Jeff Wyckoff, Robert Langer, Ana Jaklenec, Daniel G Anderson
mRNA therapeutics hold promise for the treatment of diseases requiring intracellular protein expression and for use in genome editing systems, but mRNA must transfect the desired tissue and cell type to be efficacious. Nanoparticle vectors that deliver the mRNA are often evaluated using mRNA encoding for reporter genes such as firefly luciferase (FLuc); however, single-cell resolution of mRNA expression cannot generally be achieved with FLuc, and, thus, the transfected cell populations cannot be determined without additional steps or experiments...
March 2, 2018: Molecular Therapy. Nucleic Acids
Jia Yu, Chen Lai, Hoon Shim, Chengsong Xie, Lixin Sun, Cai-Xia Long, Jinhui Ding, Yan Li, Huaibin Cai
BACKGROUND: Dynactin p150Glued , the largest subunit of the dynactin macromolecular complex, binds to both microtubules and tubulin dimers through the N-terminal cytoskeleton-associated protein and glycine-rich (CAP-Gly) and basic domains, and serves as an anti-catastrophe factor in stabilizing microtubules in neurons. P150Glued also initiates dynein-mediated axonal retrograde transport. Multiple missense mutations at the CAP-Gly domain of p150Glued are associated with motor neuron diseases and other neurodegenerative disorders, further supporting the importance of microtubule domains (MTBDs) in p150Glued functions...
March 1, 2018: Molecular Neurodegeneration
Stephen C Searles, Endi K Santosa, Jack D Bui
Cell-cell fusion describes the process by which two cells combine their plasma membranes and become a single cell, possessing and retaining certain genetic information from each parent cell. Here, using a Cre- loxP -based method initially developed to investigate extracellular vesicle targeting, we found that cancer cells spontaneously and rapidly deliver DNA to non-cancer cells in vitro via a cell-cell fusion event. The resulting hybrid cells were aneuploid and possessed enhanced clonal diversity and chemoresistance compared to non-hybrid cancer cells...
January 19, 2018: Oncotarget
Changwei Dou, Zhikui Liu, Kangsheng Tu, Hongbin Zhang, Chen Chen, Usman Yaqoob, Yuanguo Wang, Jialing Wen, Jan van Deursen, Delphine Sicard, Daniel Tschumperlin, Hongzhi Zou, Wei-Chien Huang, Raul Urrutia, Vijay H Shah, Ningling Kang
BACKGROUND & AIMS: Hepatic stellate cells (HSCs) contribute to desmoplasia and stiffness of liver metastases by differentiating into matrix-producing myofibroblasts. We investigated whether stiffness due to the presence of tumors increases activation of HSCs into myofibroblasts and their tumor-promoting effects, as well as the role of E1A binding protein p300 (EP300 or p300), a histone acetyltransferase that regulates transcription, in these processes. METHODS: HSCs were isolated from liver tissues of patients, mice in which the p300 gene was flanked by 2 loxP sites (p300F/F mice), and p300+/+ mice (controls)...
February 15, 2018: Gastroenterology
Yun-Kai Lin, Zheng Fang, Tian-Yi Jiang, Zheng-Hua Wan, Yu-Fei Pan, Yun-Han Ma, Yuan-Yuan Shi, Ye-Xiong Tan, Li-Wei Dong, Yong-Jie Zhang, Hong-Yang Wang
Kras mutations are among the most common genetic abnormalities in human neoplasms, including cholangiocarcinomas, pancreatic cancer and colon cancer. PTEN has previously been associated with cholangiocarcinoma development in murine models. Here, we have established novel mouse models of neoplasms by liver-specific and biliary-pancreatic Kras activation and PTEN deletion. By liver-specific disruption of PTEN and activation of Kras in mice caused rapid development of intrahepatic biliary epithelial proliferative lesions (Intrahepatic cholangiocarcinoma, ICC), which progress through dysplasia to invasive carcinoma...
February 13, 2018: Cancer Letters
Anita Kneppers, Lex Verdijk, Chiel de Theije, Mark Corten, Ellis Gielen, Luc van Loon, Annemie Schols, Ramon Langen
BACKGROUND: Due to the post-mitotic nature of myonuclei, postnatal myogenesis is essential for skeletal muscle growth, repair, and regeneration. This process is facilitated by satellite cells through proliferation, differentiation, and subsequent fusion with a pre-existing muscle fiber (i.e., myonuclear accretion). Current knowledge of myogenesis is primarily based on the in vitro formation of syncytia from myoblasts, which represents aspects of developmental myogenesis, but may incompletely portray postnatal myogenesis...
February 14, 2018: Skeletal Muscle
Eric K Hubner, Christian Lechler, Thomas N Rösner, Birgit Kohnke-Ertel, Roland M Schmid, Ursula Ehmer
In research models of liver cancer, regeneration, inflammation, and fibrosis, flexible systems for in vivo gene expression and silencing are highly useful. Hydrodynamic tail vein injection of transposon-based constructs is an efficient method for genetic manipulation of hepatocytes in adult mice. In addition to constitutive transgene expression, this system can be used for more advanced applications, such as shRNA-mediated gene knock-down, implication of the CRISPR/Cas9 system to induce gene mutations, or inducible systems...
February 2, 2018: Journal of Visualized Experiments: JoVE
Dmitry Gerashchenko, Michelle A Schmidt, Mark R Zielinski, Michele E Moore, Jonathan P Wisor
Slow-wave activity (SWA) in the electroencephalogram during slow-wave sleep (SWS) varies as a function of sleep-wake history. A putative sleep-active population of neuronal nitric oxide synthase (nNOS)-containing interneurons in the cerebral cortex, defined as such by the expression of Fos in animals euthanized after protracted deep sleep, may be a local regulator of SWA. We investigated whether electrophysiological responses to activation of these cells are consistent with their role of a local regulator of SWA...
February 10, 2018: Neuroscience
Jeremy Michael Brownstein, Amy Jordan Wisdom, Katherine D Castle, Yvonne M Mowery, Peter M Guida, Chang-Lung Lee, Francesco Tommasino, Chiara La Tessa, Emanuele Scifoni, Junheng Gao, Lixia Luo, Lorraine Da Silva Campos, Yan Ma, Nerissa Williams, Sin-Ho Jung, Marco Durante, David G Kirsch
Carbon ion therapy (CIT) offers several potential advantages for treating cancers compared with X-ray and proton radiotherapy including increased biological efficacy and more conformal dosimetry. However, CIT potency has not been characterized in primary tumor animal models. Here, we calculate the relative biological effectiveness (RBE) of carbon ions compared to X-rays in an autochthonous mouse model of soft tissue sarcoma. We used Cre/loxP technology to generate primary sarcomas in KrasLSL-G12D/+; p53fl/fl mice...
February 7, 2018: Molecular Cancer Therapeutics
Gokul Kesavan, Juliane Hammer, Stefan Hans, Michael Brand
New genome-editing approaches, such as the CRISPR/Cas system, have opened up great opportunities to insert or delete genes at targeted loci and have revolutionized genetics in model organisms like the zebrafish. The Cre-loxp recombination system is widely used to activate or inactivate genes with high spatial and temporal specificity. Using a CRISPR/Cas9-mediated knock-in strategy, we inserted a zebrafish codon-optimized CreER T2 transgene at the otx2 gene locus to generate a conditional Cre-driver line. We chose otx2 as it is a patterning gene of the anterior neural plate that is expressed during early development...
February 12, 2018: Cell and Tissue Research
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"