Read by QxMD icon Read


Jill R Crittenden, Paul W Tillberg, Michael H Riad, Yasuyuki Shima, Charles R Gerfen, Jeffrey Curry, David E Housman, Sacha B Nelson, Edward S Boyden, Ann M Graybiel
The dopamine systems of the brain powerfully influence movement and motivation. We demonstrate that striatonigral fibers originating in striosomes form highly unusual bouquet-like arborizations that target bundles of ventrally extending dopamine-containing dendrites and clusters of their parent nigral cell bodies. Retrograde tracing showed that these clustered cell bodies in turn project to the striatum as part of the classic nigrostriatal pathway. Thus, these striosome-dendron formations, here termed "striosome-dendron bouquets," likely represent subsystems with the nigro-striato-nigral loop that are affected in human disorders including Parkinson's disease...
October 4, 2016: Proceedings of the National Academy of Sciences of the United States of America
Kazuya Hagimoto, Saki Takami, Fujio Murakami, Yasuto Tanabe
The striatum, the largest nucleus of the basal ganglia controlling motor and cognitive functions, can be characterized by a labyrinthine mosaic organization of striosome/matrix compartments. It is unclear how striosome/matrix mosaic formation is spatially and temporally controlled at the cellular level during the striatal development. Here, by combining in vivo electroporation and brain slice cultures, we set up a prospective experimental system where we differentially labeled striosome and matrix cells from the time of birth and followed their distributions and migratory behaviors...
August 17, 2016: Journal of Comparative Neurology
Stewart Shipp
Unidirectional connections from the cortex to the matrix of the corpus striatum initiate the cortico-basal ganglia (BG)-thalamocortical loop, thought to be important in momentary action selection and in longer-term fine tuning of behavioural repertoire; a discrete set of striatal compartments, striosomes, has the complementary role of registering or anticipating reward that shapes corticostriatal plasticity. Re-entrant signals traversing the cortico-BG loop impact predominantly frontal cortices, conveyed through topographically ordered output channels; by contrast, striatal input signals originate from a far broader span of cortex, and are far more divergent in their termination...
July 13, 2016: Brain Structure & Function
Fumino Fujiyama
Electrophysiological studies in monkeys have shown that dopaminergic neurons respond to the reward prediction error. In addition, striatal neurons alter their responsiveness to cortical or thalamic inputs in response to dopamine signals, via dopamine-regulated synaptic plasticity. These findings have led to the hypothesis that the striatum exhibits synaptic plasticity under the influence of reward prediction error and conducts reinforcement learning throughout the basal ganglia circuits. The reinforcement learning model is useful; however, the mechanism by which such a process emerges in the basal ganglia needs to be anatomically explained...
July 2016: Brain and Nerve, Shinkei Kenkyū No Shinpo
Alicia Rivera, Belén Gago, Diana Suárez-Boomgaard, Takashi Yoshitake, Ruth Roales-Buján, Alejandra Valderrama-Carvajal, Ainhoa Bilbao, José Medina-Luque, Zaida Díaz-Cabiale, Kathleen Van Craenenbroeck, Dasiel O Borroto-Escuela, Jan Kehr, Fernando Rodríguez de Fonseca, Luis Santín, Adelaida de la Calle, Kjell Fuxe
Morphine is one of the most effective drugs used for pain management, but it is also highly addictive. Morphine elicits acute and long-term adaptive changes at cellular and molecular level in the brain, which play a critical role in the development of tolerance, dependence and addiction. Previous studies indicated that the dopamine D4 receptor (D4 R) activation counteracts morphine-induced adaptive changes of the μ opioid receptor (MOR) signaling in the striosomes of the caudate putamen (CPu), as well as the induction of several Fos family transcription factors...
May 22, 2016: Addiction Biology
Ryoma Morigaki, Satoshi Goto
Among the basal ganglia-thalamocortical circuits, the putamen plays a critical role in the "motor" circuits that control voluntary movements and motor learning. The human neostriatum comprises two functional subdivisions known as the striosome (patch) and matrix compartments. Accumulating evidence suggests that compartment-specific dysregulations of dopamine activity might be involved in the disease-specific pathology and symptoms of human striatal diseases including movement disorders. This study was undertaken to examine whether or how striatal dopaminergic innervations are organized into the compartmentalized architecture found in the putamen of adult human brains...
2016: Frontiers in Neuroanatomy
Armando G Salinas, Margaret I Davis, David M Lovinger, Yolanda Mateo
The striatum is typically classified according to its major output pathways, which consist of dopamine D1 and D2 receptor-expressing neurons. The striatum is also divided into striosome and matrix compartments, based on the differential expression of a number of proteins, including the mu opioid receptor, dopamine transporter (DAT), and Nr4a1 (nuclear receptor subfamily 4, group A, member 1). Numerous functional differences between the striosome and matrix compartments are implicated in dopamine-related neurological disorders including Parkinson's disease and addiction...
September 2016: Neuropharmacology
Ritsuko Inoue, Takeo Suzuki, Kinya Nishimura, Masami Miura
The striatum consists of two neurochemically distinct compartments: the striosomes (or patches) and the extrastriosomal matrix. Although striatal neurons are strongly innervated by intrinsic cholinergic interneurons, acetylcholinesterase is expressed more abundantly in the matrix than in the striosomes. At present, little is known about the different cholinergic functions of the striatal compartments. In this study, we examined gamma-aminobutyric acidergic (GABAergic) inputs to cholinergic interneurons in both compartments...
June 2016: Neuropharmacology
Ryoma Morigaki, Satoshi Goto
The human neostriatum consists of two functional subdivisions referred to as the striosome (patch) and matrix compartments. The striosome-matrix dopamine systems play a central role in cortico-thalamo-basal ganglia circuits, and their involvement is thought to underlie the genesis of multiple movement and behavioral disorders, and of drug addiction. Human neuropathology also has shown that striosomes and matrix have differential vulnerability patterns in several striatal neurodegenerative diseases. Postsynaptic density protein 95 (PSD-95), also known as disks large homolog 4, is a major scaffolding protein in the postsynaptic densities of dendritic spines...
2015: Frontiers in Neuroanatomy
Monika Rataj-Baniowska, Anna Niewiadomska-Cimicka, Marie Paschaki, Monika Szyszka-Niagolov, Laura Carramolino, Miguel Torres, Pascal Dollé, Wojciech Krężel
The mammalian striatum controls sensorimotor and psychoaffective functions through coordinated activities of its two striatonigral and striatopallidal output pathways. Here we show that retinoic acid receptor β (RARβ) controls development of a subpopulation of GABAergic, Gad65-positive striatonigral projection neurons. In Rarb(-/-) knock-out mice, concomitant reduction of Gad65, dopamine receptor D1 (Drd1), and substance P expression at different phases of prenatal development was associated with reduced number of Drd1-positive cells at birth, in contrast to normal numbers of striatopallidal projection neurons expressing dopamine receptor D2...
October 28, 2015: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Ryan C Murray, Mary C Logan, Kristen A Horner
Stereotypy can be characterized as inflexible, repetitive behaviors that occur following repeated exposure to psychostimulants, such as cocaine (COC). Stereotypy may be related to preferential activation of the patch (striosome) compartment of striatum, as enhanced relative activation of the patch compartment has been shown to positively correlate with the emergence of stereotypy following repeated psychostimulant treatment. However, the specific contribution of the patch compartment to COC-induced stereotypy following repeated exposure is unknown...
August 27, 2015: Brain Research
Katherine R Brimblecombe, Stephanie J Cragg
The mammalian striatum has a topographical organization of input-output connectivity, but a complex internal, nonlaminar neuronal architecture comprising projection neurons of two types interspersed among multiple interneuron types and potential local neuromodulators. From this cellular melange arises a biochemical compartmentalization of areas termed striosomes and extrastriosomal matrix. The functions of these compartments are poorly understood but might confer distinct features to striatal signal processing and be discretely governed...
June 17, 2015: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Alexander Friedman, Daigo Homma, Leif G Gibb, Ken-Ichi Amemori, Samuel J Rubin, Adam S Hood, Michael H Riad, Ann M Graybiel
A striking neurochemical form of compartmentalization has been found in the striatum of humans and other species, dividing it into striosomes and matrix. The function of this organization has been unclear, but the anatomical connections of striosomes indicate their relation to emotion-related brain regions, including the medial prefrontal cortex. We capitalized on this fact by combining pathway-specific optogenetics and electrophysiology in behaving rats to search for selective functions of striosomes. We demonstrate that a medial prefronto-striosomal circuit is selectively active in and causally necessary for cost-benefit decision-making under approach-avoidance conflict conditions known to evoke anxiety in humans...
June 4, 2015: Cell
Björn Reinius, Martina Blunder, Frances M Brett, Anders Eriksson, Kalicharan Patra, Jörgen Jonsson, Elena Jazin, Klas Kullander
The striatum serves as the main input to the basal ganglia, and is key for the regulation of motor behaviors, compulsion, addiction, and various cognitive and emotional states. Its deterioration is associated with degenerative disorders such as Huntington's disease. Despite its apparent anatomical uniformity, it consists of intermingled cell populations, which have precluded straightforward anatomical sub-classifications adhering to functional dissections. Approximately 95% of the striatal neurons are inhibitory projection neurons termed medium spiny neurons (MSNs)...
2015: Frontiers in Behavioral Neuroscience
I Ruiz-DeDiego, J R Naranjo, D Hervé, R Moratalla
BACKGROUND: In rodents, the olfactory type G-protein α subunit (Gαolf) couples the dopamine D1 receptor (D1R) to adenylyl cyclase, triggering intracellular signaling and neuronal activation. In the striatum, Gαolf is enriched in the striosomes. Changes in Gαolf protein levels have been observed after dopamine depletion. However, the regulation of Gαolf expression by dopamine and dopamine receptors is not fully understood. METHODS: To address this, Striatal Gαolf expression pattern was studied in wild-type and genetically engineered mice lacking D1R, D2R (D2 receptor), and downstream regulatory element antagonist modulator (DREAM) protein whose dopamine levels were manipulated...
July 2015: Movement Disorders: Official Journal of the Movement Disorder Society
David A Kupferschmidt, Patrick A Cody, David M Lovinger, Margaret I Davis
Optogenetic constructs have revolutionized modern neuroscience, but the ability to accurately and efficiently assess their expression in the brain and associate it with prior functional measures remains a challenge. High-resolution imaging of thick, fixed brain sections would make such post-hoc assessment and association possible; however, thick sections often display autofluorescence that limits their compatibility with fluorescence microscopy. We describe and evaluate a method we call "Brain BLAQ" (Block Lipids and Aldehyde Quench) to rapidly reduce autofluorescence in thick brain sections, enabling efficient axon-level imaging of neurons and their processes in conventional tissue preparations using standard epifluorescence microscopy...
2015: Frontiers in Neuroanatomy
Fumino Fujiyama, Susumu Takahashi, Fuyuki Karube
Electrophysiological studies in monkeys have shown that dopaminergic neurons respond to the reward prediction error. In addition, striatal neurons alter their responsiveness to cortical or thalamic inputs in response to the dopamine signal, via the mechanism of dopamine-regulated synaptic plasticity. These findings have led to the hypothesis that the striatum exhibits synaptic plasticity under the influence of the reward prediction error and conduct reinforcement learning throughout the basal ganglia circuits...
2015: Frontiers in Neuroscience
Violeta G Lopez-Huerta, Yoko Nakano, Johannes Bausenwein, Omar Jaidar, Michael Lazarus, Yoan Cherassse, Marianela Garcia-Munoz, Gordon Arbuthnott
The striosome (or patch) was first identified with anatomical techniques as neurons organized in a three-dimensional labyrinth inserted in and interdigitating the rest of neostriatum: the matrix. Striosome and matrix rapidly became known as two neuronal compartments expressing different biochemical markers, embryonic development and afferent and efferent connectivity. In spite of extensive intrinsic neuronal axonal and dendritic extensions supposed to exchange information between matrix and striosomes, evidence suggested the presence of independent areas...
April 2016: Brain Structure & Function
H J Waldvogel, R L M Faull
GABA(A) receptors are assembled into pentameric receptor complexes from a total of 19 different subunits derived from a variety of different subunit classes (α1-6, β1-3, γ1-3, δ, ɛ, θ, and π) which surround a central chloride ion channel. GABA(A) receptor complexes are distributed heterogeneously throughout the brain and spinal cord and are activated by the extensive GABAergic inhibitory system. In this chapter, we describe the heterogeneous distribution of six of the most widely distributed subunits (α1, α2, α3, β2,3, and γ2) throughout the human basal ganglia...
2015: Advances in Pharmacology
Helen Newman, Fu-Chin Liu, Ann M Graybiel
The mature striatum is divided into a labyrinthine system of striosomes embedded in a surrounding matrix compartment. We pulse-labeled striosomal cells (S cells) and matrix cells (M cells) in cats with (3) H-thymidine and followed their distributions during fetal and postnatal development. We identified three maturational phases in S-cell distributions. The early phase (sampled at embryonic day [E]27-E35 following E24-E28 (3) H-thymidine) was characterized by a transient medial accumulation of synchronously generated S cells within the caudate nucleus adjoining the ganglionic eminence, potentially a waiting compartment...
April 15, 2015: Journal of Comparative Neurology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"