Read by QxMD icon Read

human factor engineering

Massimo Alfano, Manuela Nebuloni, Raffaele Allevi, Pietro Zerbi, Erika Longhi, Roberta Lucianò, Irene Locatelli, Angela Pecoraro, Marco Indrieri, Chantal Speziali, Claudio Doglioni, Paolo Milani, Francesco Montorsi, Andrea Salonia
In the fields of biomaterials and tissue engineering simulating the native microenvironment is of utmost importance. As a major component of the microenvironment, the extracellular matrix (ECM) contributes to tissue homeostasis, whereas modifications of native features are associated with pathological conditions. Furthermore, three-dimensional (3D) geometry is an important feature of synthetic scaffolds favoring cell stemness, maintenance and differentiation. We analyzed the 3D structure, geometrical measurements and anisotropy of the ECM isolated from (i) human bladder mucosa (basal lamina and lamina propria) and muscularis propria; and, (ii) bladder carcinoma (BC)...
October 25, 2016: Scientific Reports
Guankui Wang, Fangfang Chen, Nirmal K Banda, V Michael Holers, LinPing Wu, S Moein Moghimi, Dmitri Simberg
While having tremendous potential as therapeutic and imaging tools, the clinical use of engineered nanoparticles has been associated with serious safety concerns. Activation of the complement cascade and the release of proinflammatory factors C3a and C5a may contribute to infusion-related reactions, whereas opsonization with C3 fragments promotes rapid recognition and clearance of nanomaterials by mononuclear phagocytes. We used dextran-coated superparamagnetic iron oxide nanoparticles (SPIO), which are potent activators of the complement system, to study the role of nanoparticle surface chemistry in inciting complement in human serum...
2016: Frontiers in Immunology
Jia Guo, Ming Jiang, Lingjing Jin, Yanxin Yin, Hui Sun, Lihua Yu, Yuting Mao, Jianmin Fang
Objective To construct lentiviral vectors for the expression of monovalent antibody against human c-mesenchymal epithelial transition factor (c-Met) using anti-c-Met chimeric antibody ch3E1D7 plasmid, and test the affinity and neutralizing ability of the purified monovalent antibody in transfected HEK293T cells. Methods The anti-c-Met monovalent antibody was designed, namely mono3E1D7. Three different lentiviral expression vectors of the monovalent antibody were then constructed using genetic engineering technology...
November 2016: Xi Bao Yu Fen Zi Mian Yi Xue za Zhi, Chinese Journal of Cellular and Molecular Immunology
Hossein E Jazayeri, Mohammadreza Tahriri, Mehdi Razavi, Kimia Khoshroo, Farahnaz Fahimipour, Erfan Dashtimoghadam, Luis Almeida, Lobat Tayebi
Tissue regeneration is rapidly evolving to treat anomalies in the entire human body. The production of biodegradable, customizable scaffolds to achieve this clinical aim is dependent on the interdisciplinary collaboration among clinicians, bioengineers and materials scientists. While bone grafts and varying reconstructive procedures have been traditionally used for maxillofacial defects, the goal of this review is to provide insight on all materials involved in the progressing utilization of the tissue engineering approach to yield successful treatment outcomes for both hard and soft tissues...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Jing Wang, Binbin Sun, Lingling Tian, Xiaomin He, Qiang Gao, Tong Wu, Seeram Ramakrishna, Jinghao Zheng, Xiumei Mo
Tracheal injuries are one of major challenging issues in clinical medicine because of the poor intrinsic ability of tracheal cartilage for repair. Tissue engineering provides an alternative method for the treatment of tracheal defects by generating replacement tracheal structures. In this study, core-shell nanofibrous scaffold was fabricated to encapsulate bovine serum albumin & rhTGF-β3 (recombinant human transforming growth factor-β3) into the core of the nanofibers for tracheal cartilage regeneration. Characterization of the core-shell nanofibrous scaffold was carried out by scanning electron microscope (SEM), transmission electron microscope (TEM), laser scanning confocal microscopy (LSCM), and tensile mechanical test...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Maria Chatzinikolaidou, Charalampos Pontikoglou, Konstantina Terzaki, Maria Kaliva, Athanasia Kalyva, Eleni Papadaki, Maria Vamvakaki, Maria Farsari
The regeneration of bone via a tissue engineering approach involves components from the macroscopic to the nanoscopic level, including appropriate 3D scaffolds, cells and growth factors. In this study, hexagonal scaffolds of different diagonals were fabricated by Direct Laser Writing using a photopolymerizable hybrid material. The proliferation of bone marrow (BM) mesenchymal stem cells (MSCs) cultured on structures with various diagonals, 50, 100, 150 and 200μm increased significantly after 10days in culture, however without significant differences among them...
October 13, 2016: Colloids and Surfaces. B, Biointerfaces
Shang-Chun Guo, Shi-Cong Tao, Wen-Jing Yin, Xin Qi, Jia-Gen Sheng, Chang-Qing Zhang
Osteonecrosis of the femoral head (ONFH) represents a debilitating complication following glucocorticoid (GC)-based therapy. Synovial-derived mesenchymal stem cells (SMSCs) can exert protective effect in the animal model of GC-induced ONFH by inducing cell proliferation and preventing cell apoptosis. Recent studies indicate the transplanted cells exert therapeutic effects primarily via a paracrine mechanism and exosomes are an important paracrine factor that can be directly used as therapeutic agents for tissue engineering...
2016: International Journal of Biological Sciences
W J Zhang, J J Sun
Objective: To construct tissue engineered-epithelial patches with human adipose-derived mesenchymal stem cells (hADSC) and extracellular matrix scaffold (ECM), and to observe their morphological characteristics and biological behaviors. Methods: The cultured and purified hADSC were co-cultured with the ECM. The adhesion of hADSC formed sheet on the ECM were observed by the scanning electron microscopy. The activity and apoptosis of hADSC cultured on the ECM were observed by laser scanning confocal microscope...
October 7, 2016: Zhonghua Er Bi Yan Hou Tou Jing Wai Ke za Zhi, Chinese Journal of Otorhinolaryngology Head and Neck Surgery
Paulina J Paszkiewicz, Simon P Fräßle, Shivani Srivastava, Daniel Sommermeyer, Michael Hudecek, Ingo Drexler, Michel Sadelain, Lingfeng Liu, Michael C Jensen, Stanley R Riddell, Dirk H Busch
The adoptive transfer of T cells that have been genetically modified to express a CD19-specific chimeric antigen receptor (CAR) is effective for treating human B cell malignancies. However, the persistence of functional CD19 CAR T cells causes sustained depletion of endogenous CD19+ B cells and hypogammaglobulinemia. Thus, there is a need for a mechanism to ablate transferred T cells after tumor eradication is complete to allow recovery of normal B cells. Previously, we developed a truncated version of the epidermal growth factor receptor (EGFRt) that is coexpressed with the CAR on the T cell surface...
October 17, 2016: Journal of Clinical Investigation
Elizabeth M Meier, Bin Wu, Aamir Siddiqui, Donna G Tepper, Michael T Longaker, Mai T Lam
: Efforts have been made to engineer knee meniscus tissue for injury repair, yet most attempts have been unsuccessful. Creating a cell source that resembles the complex, heterogeneous phenotype of the meniscus cell remains difficult. Stem cell differentiation has been investigated, mainly using bone marrow mesenchymal cells and biochemical means for differentiation, resulting in no solution. Mechanical stimulation has been investigated to an extent with no conclusion. Here, we explore the potential for and effectiveness of mechanical stimulation to induce the meniscal phenotype in adipose-derived stromal cells...
September 2016: Plastic and Reconstructive Surgery. Global Open
Stacey S Huppert, Kathleen M Campbell
PURPOSE OF REVIEW: Although the liver possesses a unique, innate ability to regenerate through mass compensation, transplantation remains the only therapy when damage outpaces regeneration, or liver metabolic capacity is irreversibly impacted. Recent insight from developmental biology has greatly influenced the advancement of alternative options to transplantation in these settings. RECENT FINDINGS: Factors known to direct liver cell specification, expansion, and differentiation have been used to generate hepatocyte-like cells from stem and somatic cells for developing cell therapies...
October 15, 2016: Current Opinion in Organ Transplantation
Aymeric Goyer
Thiamin is essential for human health. While plants are the ultimate source of thiamin in most human diets, staple foods like white rice have low thiamin content. Therefore, populations whose diets are mainly based on low-thiamin staple crops suffer from thiamin deficiency. Biofortification of rice grain by engineering the thiamin biosynthesis pathway has recently been attempted, with up to 5-fold increase in thiamin content in unpolished seeds. However, polished seeds that retain only the starchy endosperm had similar thiamin content than that of non-engineered plants...
October 14, 2016: Current Opinion in Biotechnology
Lisa M Li, Titus Wong, Emily Rose, Graham Wickham, Elizabeth Bryce
BACKGROUND: A tabletop-type ultraviolet C (UVC) light-emitting disinfecting device was evaluated for microbiologic effectiveness, safety, usability, and end-user satisfaction. METHODS: Three different inoculums of methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus-baumannii complex strains suspended in both saline and trypticase soy broth were applied onto stainless steel carriers and electronic device surfaces in triplicate and cultured for growth after UVC disinfection...
October 11, 2016: American Journal of Infection Control
Luiz Alexandre Chisini, Marcus Cristian Muniz Conde, Jose Carlos Bernedo Alcázar, Adriana Fernandes da Silva, Jacques Eduardo Nör, Sandra Beatriz Chaves Tarquinio, Flávio Fernando Demarco
The aim of the present study was to evaluate the expression of transforming growth factor-β1 (TGF-β1) and osteonectin (ON) in pulp-like tissues developed by tissue engineering and to compare it with the expression of these proteins in pulps treated with Ca(OH)2 therapy. Tooth slices were obtained from non-carious human third molars under sterile procedures. The residual periodontal and pulp soft tissues were removed. Empty pulp spaces of the tooth slice were filled with sodium chloride particles (250-425 µm)...
October 10, 2016: Brazilian Oral Research
Carmen Martinez-Valenzuela, Fernanda Balderrama Soto, Stefan M Waliszewski, Enrique Meza, Sandra Gómez Arroyo, Luis Daniel Ortega Martínez, Eliakym Arambula Meraz, Mario Caba
Gasoline is a blend of organic compounds used in internal combustion engines. Gasoline-station attendants are exposed to gasoline vapors, which pose a potentially mutagenic risk. According to the International Agency for Research on Cancer, exposure to gasoline and engine exhaust is possibly carcinogenic to humans. We determined the frequency of micronucleus and other nuclear abnormalities, such as pyknotic nuclei, chromatin condensation, cells with nuclear buds, karyolytic cells, karyorrhexis, and binucleated cells in buccal mucosal smears of 60 gasoline-station attendants and 60 unexposed controls...
October 12, 2016: Environmental Science and Pollution Research International
Xie Dejian, Shi Minglei, Zhang Yan, Wang Tianyi, Shen Wenlong, Ye Bingyu, Li Ping, He Chao, Zhang Xiangyuan, Zhao Zhihu
The CCCTC-binding factor (CTCF) is the main insulator protein described in vertebrates. It plays fundamental roles during diverse cellular processes. CTCF gene knockout mice led to death during embryonic development. To further explore the functions of CTCF, we employed a CRISPR/Cas9-based genome engineering strategy to in-frame insert the mitosis-special degradation domain (MD) of cyclin B into the upstream open reading frame of CTCF gene. Fusion protein is designed to degrade during mitosis leaded by MD. As a control group, mutation of a single arginine (R42A) within the destruction box inactivates the MD leading to constitutive expression of MD(*)-CTCF...
July 20, 2016: Yi Chuan, Hereditas
Cheng Zhong, Hai-Yang Xie, Lin Zhou, Xiao Xu, Shu-Sen Zheng
BACKGROUND: Because of an increasing discrepancy between the number of potential liver graft recipients and the number of organs available, scientists are trying to create artificial liver to mimic normal liver function and therefore, to support the patient's liver when in dysfunction. 3D printing technique meets this purpose. The present study was to test the feasibility of 3D hydrogel scaffolds for liver engineering. METHODS: We fabricated 3D hydrogel scaffolds with a bioprinter...
October 2016: Hepatobiliary & Pancreatic Diseases International: HBPD INT
Yeji Kim, Julie C Liu
Peripheral artery disease often requires treatments with vascular grafts for vessel reconstruction. Endothelialization of the vascular grafts is important to achieve long-term patency because endothelial cells regulate thrombosis, inflammation, and growth of smooth muscle cells. One potential source of endothelial cells is human mesenchymal stem cells (hMSCs), which can be routinely differentiated towards the endothelial lineage using exogenous growth factors such as vascular endothelial growth factor (VEGF)...
October 12, 2016: Biomaterials Science
Christoph Meinert, Karsten Schrobback, Peter A Levett, Cameron Lutton, Robert L Sah, Travis J Klein
Biological tissues at articulating surfaces, such as articular cartilage, typically have remarkable low-friction properties that limit tissue shear during movement. However, these frictional properties change with trauma, aging, and disease, resulting in an altered mechanical state within the tissues. Yet, it remains unclear how these surface changes affect the behaviour of embedded cells when the tissue is mechanically loaded. Here, we developed a cytocompatible, bilayered hydrogel system that permits control of surface frictional properties without affecting other bulk physicochemical characteristics such as compressive modulus, mass swelling ratio, and water content...
October 8, 2016: Acta Biomaterialia
Chun-Chieh Huang, Raghuvaran Narayanan, Satish Alapati, Sriram Ravindran
Achieving and maintaining safe and reliable lineage specific differentiation of stem cells is important for clinical translation of tissue engineering strategies. In an effort to circumvent the multitude of problems arising from the usage of growth factors and growth factor delivery systems, we have explored the use of exosomes as biomimetic tools to induce stem cell differentiation. Working on the hypothesis that cell-type specific exosomes can trigger lineage-specific differentiation of stem cells, we have evaluated the potential of exosomes derived from dental pulp cells cultured on under growth and odontogenic differentiation conditions to induce odontogenic differentiation of naïve human dental pulp stem cells (DPSCs) and human bone marrow derived stromal cells (HMSCs) in vitro and in vivo...
December 2016: Biomaterials
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"