Read by QxMD icon Read

G protein coupled receptors

Danielle E Jenkins, Dharshini Sreenivasan, Fiona Carman, Samal Babru, Lee E Eiden, Stephen J Bunn
The pro-inflammatory cytokines, tumor necrosis factor-α and interleukin-1β/α modulate catecholamine secretion, and long-term gene regulation, in chromaffin cells of the adrenal medulla. Since interleukin-6 (IL6) also plays a key integrative role during inflammation, we have examined its ability to affect both tyrosine hydroxylase activity and adrenomedullary gene transcription in cultured bovine chromaffin cells. IL6 caused acute tyrosine/threonine phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), and serine/tyrosine phosphorylation of signal transducer and activator of transcription 3 (STAT3)...
October 22, 2016: Journal of Neurochemistry
Zhiwei Feng, Guanxing Hu, Shifan Ma, Xiang-Qun Xie
No abstract text is available yet for this article.
October 21, 2016: AAPS Journal
Wilfried Dinh, Barbara Albrecht-Küpper, Mihai Gheorghiade, Adriaan A Voors, Michael van der Laan, Hani N Sabbah
Adenosine exerts a variety of physiological effects by binding to cell surface G-protein-coupled receptor subtypes, namely, A1, A2a, A2b, and A3. The central physiological role of adenosine is to preclude tissue injury and promote repair in response to stress. In the heart, adenosine acts as a cytoprotective modulator, linking cardiac function to metabolic demand predominantly via activation of adenosine A1 receptors (A1Rs), which leads to inhibition of adenylate cyclase activity, modulation of protein kinase C, and opening of ATP-sensitive potassium channels...
October 22, 2016: Handbook of Experimental Pharmacology
Luisa Iacovelli, Luisa Di Menna, Daniel Peterlik, Christina Stangl, Rosamaria Orlando, Gemma Molinaro, Antonio De Blasi, Valeria Bruno, Giuseppe Battaglia, Peter J Flor, Nicole Uschold-Schmidt, Ferdinando Nicoletti
We studied the interaction between mGlu7 and α1-adrenergic receptors in heterologous expression systems, brain slices, and living animals. L-2-Amino-4-phosphonobutanoate (L-AP4), and l-serine-O-phosphate (L-SOP), which activate group III mGlu receptors, restrained the stimulation of polyphosphoinositide (PI) hydrolysis induced by the α1-adrenergic receptor agonist, phenylephrine, in HEK 293 cells co-expressing α1-adrenergic and mGlu7 receptors. The inibitory action of L-AP4 was abrogated by (i) the mGlu7 receptor antagonist, XAP044; (ii) the C-terminal portion of type-2 G protein coupled receptor kinase; and (iii) the MAP kinase inhibitors, UO126 and PD98059...
October 18, 2016: Neuropharmacology
E Kamanga-Sollo, K J Thornton, M E White, W R Dayton
In feedlot steers, estradiol-17β (E2) and combined E2 and trenbolone acetate (a testosterone analog) implants enhance rate and efficiency of muscle growth; and, consequently, these compounds are widely used as growth promoters in several countries. Treatment with E2 stimulates protein synthesis rate and suppresses protein degradation rate in fused bovine satellite cell (BSC) cultures; however, the mechanisms involved in these effects are not known with certainty. Although the genomic effects of E2 mediated through the classical estrogen receptors have been characterized, recent studies indicate that binding of E2 to the G protein-coupled estrogen receptor (GPER)-1 mediates nongenomic effects of E2 on cellular function...
September 13, 2016: Domestic Animal Endocrinology
Junting Huang, Gerald W Zamponi
Calcium entry via voltage gated calcium channels mediates a wide range of physiological functions, whereas calcium channel dysregulation has been associated with numerous pathophysiological conditions. There are myriad cell signaling pathways that act on voltage gated calcium channels to fine tune their activities and to regulate their cell surface expression. These regulatory mechanisms include the activation of G protein-coupled receptors and downstream phosphorylation events, and their control over calcium channel trafficking through direct physical interactions...
October 18, 2016: Current Opinion in Pharmacology
Louis M Luttrell
The ability of structurally distinct ligands to "bias" G protein-coupled receptor signaling affords the opportunity to tailor efficacy to suit specific therapeutic needs. Furness et al. demonstrate that ligand structure controls not only which effectors are activated, but also the way they are activated and the kinetics of downstream signaling.
October 20, 2016: Cell
Katrin Feldbauer, Jan Schlegel, Juliane Weissbecker, Frank Sauer, Phillip G Wood, Ernst Bamberg, Ulrich Terpitz
An optochemokine tandem was developed to control the release of calcium from endosomes into the cytosol by light and to analyze the internalization kinetics of G-protein coupled receptors (GPCRs) by electrophysiology. A previously constructed rhodopsin tandem was re-engineered to combine the light-gated Ca2+-permeable cation channel Channelrhodopsin-2(L132C), CatCh, with the chemokine receptor CXCR4 in a functional tandem protein tCXCR4/CatCh. The GPCR was used as a shuttle protein to displace CatCh from the plasma membrane into intracellular areas...
2016: PloS One
Xiao-Feng Xiong, Hang Zhang, Christina R Underwood, Kasper Harpsøe, Thomas J Gardella, Mie F Wöldike, Michael Mannstadt, David E Gloriam, Hans Bräuner-Osborne, Kristian Strømgaard
G proteins are key mediators of G protein-coupled receptor signalling, which facilitates a plethora of important physiological processes. The cyclic depsipeptides YM-254890 and FR900359 are the only known specific inhibitors of the Gq subfamily of G proteins; however, no synthetic route has been reported previously for these complex natural products and they are not easily isolated from natural sources. Here we report the first total synthesis of YM-254890 and FR900359, as well as of two known analogues, YM-385780 and YM-385781...
November 2016: Nature Chemistry
Mengjie Lu, Beili Wu
G protein-coupled receptors (GPCRs) comprise the largest membrane protein family. These receptors sense a variety of signaling molecules, activate multiple intracellular signal pathways, and act as the targets of over 40% of marketed drugs. Recent progress on GPCR structural studies provides invaluable insights into the structure-function relationship of the GPCR superfamily, deepening our understanding about the molecular mechanisms of GPCR signal transduction. Here, we review recent breakthroughs on GPCR structure determination and the structural features of GPCRs, and take the structures of chemokine receptor CCR5 and purinergic receptors P2Y1 R and P2Y12 R as examples to discuss the importance of GPCR structures on functional studies and drug discovery...
October 20, 2016: IUBMB Life
Wei Bu, Huiling Ren, Yunping Deng, Nobel Del Mar, Natalie M Guley, Bob M Moore, Marcia G Honig, Anton Reiner
We have previously reported that mild TBI created by focal left-side cranial blast in mice produces widespread axonal injury, microglial activation, and a variety of functional deficits. We have also shown that these functional deficits are reduced by targeting microglia through their cannabinoid type-2 (CB2) receptors using 2-week daily administration of the CB2 inverse agonist SMM-189. CB2 inverse agonists stabilize the G-protein coupled CB2 receptor in an inactive conformation, leading to increased phosphorylation and nuclear translocation of the cAMP response element binding protein (CREB), and thus bias activated microglia from a pro-inflammatory M1 to a pro-healing M2 state...
2016: Frontiers in Neuroscience
Yu Jin Lee, Kyeong Jin Shin, Soo-Ah Park, Kyeong Su Park, Seorim Park, Kyun Heo, Young-Kyo Seo, Dong-Young Noh, Sung Ho Ryu, Pann-Ghill Suh
G-protein-coupled receptor 81 (GPR81) functions as a receptor for lactate and plays an important role in the regulation of anti-lipolytic effects in adipocytes. However, to data, a role for GPR81 in the tumor microenvironment has not been clearly defined. Here, GPR81 expression in breast cancer patients and several breast cancer cell lines was significantly increased compared with normal mammary tissues and cells. GPR81 knockdown resulted in impaired breast cancer growth and led to apoptosis both in vitro and in vivo...
September 27, 2016: Oncotarget
Stefano Fiorucci, Angela Zampella, Giuseppe Cirino, Mariarosaria Bucci, Eleonora Distrutti
Bile acids are end product of cholesterol metabolism generated in the liver and released in the intestine. In addition to their role in nutrient absorption, bile acids are increasingly recognized as regulatory signals which exert their function beyond the intestine by activating a network of membrane and nuclear receptors. The best characterized of these bile acid activated receptors, GPBAR1 (also known as TGR5) and the Farnesosid-x-receptor (FXR) have also been detected in the vascular system and their activation mediate the vasodilatory effects of bile acids in the systemic and splanchnic circulation...
October 7, 2016: American Journal of Physiology. Heart and Circulatory Physiology
Ryo Kamata, Batmunkh Bumdelger, Hiroki Kokubo, Masayuki Fujii, Koichi Yoshimura, Takafumi Ishida, Mari Ishida, Masao Yoshizumi
Abdominal aortic aneurysms (AAAs), which commonly occur among elderly individuals, are accompanied by a risk of rupture with a high mortality rate. Although eicosapentaenoic acid (EPA) has been reported to prevent AAA formation, the mechanism by which EPA works on vascular smooth muscle cells is unknown. This study aimed to investigate the mechanism by which orally-administered EPA prevents the formation of severe AAAs that develop in Osteoprotegerin (Opg) knockout (KO) mice. In the CaCl2-induced AAA model, EPA attenuated the enhanced progression of AAAs in Opg-KO mice, including the increase in aortic diameter with destruction of elastic fibers in the media...
2016: PloS One
Rita Valenzuela, Maria A Costa-Besada, Javier Iglesias-Gonzalez, Emma Perez-Costas, Begoña Villar-Cheda, Pablo Garrido-Gil, Miguel Melendez-Ferro, Ramon Soto-Otero, Jose L Lanciego, Daniel Henrion, Rafael Franco, Jose L Labandeira-Garcia
The renin-angiotensin system (RAS) was initially considered as a circulating humoral system controlling blood pressure, being kidney the key control organ. In addition to the 'classical' humoral RAS, a second level in RAS, local or tissular RAS, has been identified in a variety of tissues, in which local RAS play a key role in degenerative and aging-related diseases. The local brain RAS plays a major role in brain function and neurodegeneration. It is normally assumed that the effects are mediated by the cell-surface-specific G-protein-coupled angiotensin type 1 and 2 receptors (AT1 and AT2)...
October 20, 2016: Cell Death & Disease
Megan Allen, Suhasini Ghosh, Gerard P Ahern, Sonia Villapol, Kathleen A Maguire-Zeiss, Katherine Conant
Matrix metalloproteinases (MMPs) are a family of secreted endopeptidases expressed by neurons and glia. Regulated MMP activity contributes to physiological synaptic plasticity, while dysregulated activity can stimulate injury. Disentangling the role individual MMPs play in synaptic plasticity is difficult due to overlapping structure and function as well as cell-type specific expression. Here, we develop a novel system to investigate the selective overexpression of a single MMP driven by GFAP expressing cells in vivo...
October 20, 2016: Scientific Reports
Hillary C Schiff, Joshua P Johansen, Mian Hou, David Ea Bush, Emily K Smith, JoAnna E Klein, Joseph E LeDoux, Robert M Sears
Memory formation requires the temporal coordination of molecular events and cellular processes following a learned event. During Pavlovian threat (fear) conditioning (PTC), sensory and neuromodulatory inputs converge on post-synaptic neurons within the lateral nucleus of the amygdala (LA). By activating an intracellular cascade of signaling molecules, these G-protein-coupled neuromodulatory receptors are capable of recruiting a diverse profile of plasticity-related proteins. Here we report that norepinephrine, through its actions on β-adrenergic receptors (βARs), modulates aversive memory formation following PTC through two molecularly and temporally distinct signaling mechanisms...
October 20, 2016: Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology
Samuele Maramai, Sandra Gemma, Simone Brogi, Giuseppe Campiani, Stefania Butini, Holger Stark, Margherita Brindisi
D3 receptors represent a major focus of current drug design and development of therapeutics for dopamine-related pathological states. Their close homology with the D2 receptor subtype makes the development of D3 selective antagonists a challenging task. In this review, we explore the relevance and therapeutic utility of D3 antagonists or partial agonists endowed with multireceptor affinity profile in the field of central nervous system disorders such as schizophrenia and drug abuse. In fact, the peculiar distribution and low brain abundance of D3 receptors make them a valuable target for the development of drugs devoid of motor side effects classically elicited by D2 antagonists...
2016: Frontiers in Neuroscience
Tetsuo Mitsui, Maho Ishida, Michi Izawa, Jun Arita
Estrogen binds to nuclear estrogen receptors (ERs) to modulate transcription of target genes in estrogen-responsive cells. However, recent studies have shown that estrogen also binds to cytoplasmic membrane ERs to modulate protein kinase signaling cascades, leading to non-genomic actions. We investigated whether either nuclear or membrane ERs, including G protein-coupled estrogen receptor 1 (Gper1), mediate the inhibitory action of estrogen on insulin-like growth factor-1 (IGF-1)-induced proliferation of pituitary lactotrophs in primary culture...
October 19, 2016: Endocrine Journal
Nariman Balenga, Pedram Azimzadeh, Joyce A Hogue, Paul N Staats, Yuhong Shi, James Koh, Holly Dressman, John A Olson
Abnormal feedback of serum calcium to parathyroid hormone (PTH) secretion is the hallmark of primary hyperparathyroidism (PHPT). While the molecular pathogenesis of parathyroid neoplasia in PHPT has been linked to abnormal expression of genes involved in cell growth (i.e. cyclin D1, retinoblastoma and β catenin), the molecular basis of abnormal calcium sensing by calcium-sensing receptor (CaSR) and PTH hypersecretion in PHPT are incompletely understood. Through gene expression profiling, we discovered that an orphan adhesion G protein-coupled receptor, GPR64/ADGRG2 is expressed in human normal parathyroid glands and is overexpressed in parathyroid tumors from patients with PHPT...
October 19, 2016: Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"