keyword
MENU ▼
Read by QxMD icon Read
search

3D biocompatibility

keyword
https://www.readbyqxmd.com/read/28436920/hybrid-3d-printing-and-electrodeposition-approach-for-controllable-3d-alginate-hydrogel-formation
#1
Wanfeng Shang, Yanting Liu, Wenfeng Wan, Chengzhi Hu, Zeyang Liu, Chin To Wong, Toshio Fukuda, Yajing Shen
Calcium alginate hydrogel is one of the most widely used biocompatible materials in biomedical and tissue engineering. This paper reports a hybrid 3D printing and electrodeposition approach to form the 3D calcium alginate hydrogel in a controllable manner. Firstly, a specific 3D printing system is developed by combining a 3D printer and a customized ejection syringe. Then, the mixed solution (1% w/v sodium alginate and 0.25% w/v CaCO3 nano particles) is filled in the syringe and ejected out from the nozzle to the substrate continuously...
April 24, 2017: Biofabrication
https://www.readbyqxmd.com/read/28433149/fabrication-and-evaluation-of-thermosensitive-chitosan-collagen-%C3%AE-%C3%AE-glycerophosphate-hydrogels-for-tissue-regeneration
#2
Qifeng Dang, Kai Liu, Zhenzhen Zhang, Chengsheng Liu, Xi Liu, Ying Xin, Xiaoyu Cheng, Tao Xu, Dongsu Cha, Bing Fan
Thermosensitive hydrogels whose physiological properties are similar to extracellular matrix have been extensively used for tissue regeneration. Polysaccharides and proteins, as biocompatible substrates similar to bio-macromolecules that could be recognized by human body, are two preferred polymers for fabrication of such hydrogels. A series of novel thermosensitive hydrogels (CS-ASC-HGs) containing chitosan (CS) and acid-soluble collagen (ASC) were thus prepared, in the presence of α, β-glycerophosphate, to mimic extracellular microenvironment for tissue regeneration...
July 1, 2017: Carbohydrate Polymers
https://www.readbyqxmd.com/read/28426183/mass-production-of-cell-laden-calcium-alginate-particles-with-centrifugal-force
#3
Yuya Morimoto, Maiko Onuki, Shoji Takeuchi
This paper describes a centrifuge-based device for oil-free and mass production of calcium-alginate (Ca-alginate) particles. The device is composed of four components: a tank with a glass capillary for forming sodium alginate droplets, a collecting bath with calcium chloride (CaCl2 ) solution, a waste liquid box, and a bypass channel bridged between the collecting bath and the waste liquid box. When the device is centrifuged, extra CaCl2 solution in the collecting bath is delivered to the waste liquid box to maintain the appropriate liquid level of CaCl2 solution for the production of monodisperse Ca-alginate particles...
April 20, 2017: Advanced Healthcare Materials
https://www.readbyqxmd.com/read/28419941/pamam-generation-4-incorporated-gelatin-3d-matrix-as-an-improved-dermal-substitute-for-skin-tissue-engineering
#4
Somnath Maji, Tarun Agarwal, Tapas Kumar Maiti
The study explored the prospects of PAMAM (generation 4) applicability in gelatin based scaffolds for skin tissue engineering. The effect of PAMAM on physico-chemical and biological characteristics of gelatin scaffolds was evaluated. Gelatin scaffolds (with/without PAMAM) were prepared by lyophilization, chemically crosslinked by glutaraldehyde and characterized for their morphology (pore size), chemical features (bond nature), water adsorption, biodegradation and biological compatibility. The study demonstrated that addition of PAMAM did not significantly alter the pore size distribution or porosity of the scaffolds...
April 5, 2017: Colloids and Surfaces. B, Biointerfaces
https://www.readbyqxmd.com/read/28406922/3d-fabrication-and-characterization-of-phosphoric-acid-scaffold-with-a-ha-%C3%AE-tcp-weight-ratio-of-60-40-for-bone-tissue-engineering-applications
#5
Yanen Wang, Kai Wang, Xinpei Li, Qinghua Wei, Weihong Chai, Shuzhi Wang, Yu Che, Tingli Lu, Bo Zhang
A key requirement for three-dimensional printing (3-DP) at room temperature of medical implants depends on the availability of printable and biocompatible binder-powder systems. Different concentration polyvinyl alcohol (PVA) and phosphoric acid solutions were chosen as the binders to make the artificial stent biocompatible with sufficient compressive strength. In order to achieve an optimum balance between the bioceramic powder and binder solution, the biocompatibility and mechanical properties of these artificial stent samples were tested using two kinds of binder solutions...
2017: PloS One
https://www.readbyqxmd.com/read/28402967/surface-curvature-in-triply-periodic-minimal-surface-architectures-as-a-distinct-design-parameter-in-preparing-advanced-tissue-engineering-scaffolds
#6
Sébastien B G Blanquer, Maike Werner, Markus Hannula, Shahriar Sharifi, Guillaume P R Lajoinie, David Eglin, Jari Hyttinen, André A Poot, Dirk W Grijpma
Reproduction of the anatomical structures and functions of tissues using cells and designed 3D scaffolds is an ongoing challenge. For this, scaffolds with appropriate biomorphic surfaces promoting cell attachment, proliferation and differentiation are needed. In this study, eight triply-periodic minimal surface (TPMS)-based scaffolds were designed using specific trigonometric equations, providing the same porosity and the same number of unit cells, while presenting different surface curvatures. The scaffolds were fabricated by stereolithography using a photocurable resin based on the biocompatible, biodegradable and rubber-like material, poly(trimethylene carbonate) (PTMC)...
April 12, 2017: Biofabrication
https://www.readbyqxmd.com/read/28402112/self-assembled-upconversion-nanoparticle-clusters-for-nir-controlled-drug-release-and-synergistic-therapy-after-conjugation-with-gold-nanoparticles
#7
Huijuan Cai, Tingting Shen, Alexander M Kirillov, Yu Zhang, Changfu Shan, Xiang Li, Weisheng Liu, Yu Tang
Fabricated three-dimensional (3D) upconversion nanoclusters (abbreviated as EBSUCNPs) are obtained via an emulsion-based bottom-up self-assembly of NaGdF4:Yb/Er@NaGdF4 nanoparticles (abbreviated as UCNPs), which comprise a NaGdF4:Yb/Er core and a NaGdF4 shell. The EBSUCNPs were then coated with a thin mesoporous amino-functionalized SiO2 shell (resulting in EBSUCNPs@SiO2 precursor) and further conjugated with gold nanoparticles to give the novel EBSUCNPs@SiO2@Au material. Finally, EBSUCNPs@SiO2@Au was applied as a biocompatible and efficient drug carrier for doxorubicin (DOX), thus giving rise to a multifunctional EBSUCNPs@SiO2-DOX@Au nanocomposite...
April 12, 2017: Inorganic Chemistry
https://www.readbyqxmd.com/read/28394600/multivalent-glycosylated-nanostructures-to-inhibit-ebola-virus-infection
#8
Beatriz M Illescas, Javier Rojo, Rafael Delgado, Nazario Martín
The infection of humans by lethal pathogens such as Ebola and other related viruses has not been properly addressed so far. In this context, a relevant question arises: What can chemistry do in the search for new strategies and approaches to solve this emergent problem? Although initially a variety of known chemical compounds-for other purposes-proved disappointing in tests against Ebola virus (EBOV) infection, more recently, specific molecules have been prepared. In this Perspective, we present new approaches directed at the design of efficient entry inhibitors to minimize the development of resistance by viral mutations...
April 20, 2017: Journal of the American Chemical Society
https://www.readbyqxmd.com/read/28393760/direct-ink-writing-of-silica-bonded-calcite-scaffolds-from-preceramic-polymers-and-fillers
#9
Laura Fiocco, Hamada Elsayed, Denis Badocco, Paolo Pastore, Devis Bellucci, Valeria Cannillo, Rainer Detsch, Aldo Boccaccini, Enrico Bernardo
Silica-bonded calcite scaffolds have been successfully 3D-printed by direct ink writing, starting from a paste comprising a silicone polymer and calcite powders, calibrated in order to match a SiO2/CaCO3 weight balance of 35/65. The scaffolds, fabricated with two slightly different geometries, were first cross-linked at 350 °C, then fired at 600 °C, in air. The low temperature adopted for the conversion of the polymer into amorphous silica, by thermo-oxidative decomposition, prevented the decomposition of calcite...
April 10, 2017: Biofabrication
https://www.readbyqxmd.com/read/28378803/functionalized-core-shell-hydrogel-microsprings-by-anisotropic-gelation-with-bevel-tip-capillary
#10
Koki Yoshida, Hiroaki Onoe
This study describes a novel microfluidic-based method for the synthesis of hydrogel microsprings that are capable of encapsulating various functional materials. A continuous flow of alginate pre-gel solution can spontaneously form a hydrogel microspring by anisotropic gelation around the bevel-tip of the capillary. This technique allows fabrication of hydrogel microsprings using only simple capillaries and syringe pumps, while their complex compartmentalization characterized by a laminar flow inside the capillary can contribute to the optimization of the microspring internal structure and functionality...
April 5, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28351679/3d-high-resolution-two-photon-crosslinked-hydrogel-structures-for-biological-studies
#11
Laura Brigo, Anna Urciuolo, Stefano Giulitti, Gioia Della Giustina, Maximilian Tromayer, Robert Liska, Nicola Elvassore, Giovanna Brusatin
Hydrogels are widely used as matrices for cell growth due to the their tuneable chemical and physical properties, which mimic the extracellular matrix of natural tissue. The microfabrication of hydrogels into arbitrarily complex 3D structures is becoming essential for numerous biological applications, and in particular for investigating the correlation between cell shape and cell function in a 3D environment. Micrometric and sub-micrometric resolution hydrogel scaffolds are required to deeply investigate molecular mechanisms behind cell-matrix interaction and downstream cellular processes...
March 25, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28350007/laser-beam-melting-3d-printing-of-ti6al4v-based-porous-structured-dental-implants-fabrication-biocompatibility-analysis-and-photoelastic-study
#12
Fei Yang, Chen Chen, QianRong Zhou, YiMing Gong, RuiXue Li, ChiChi Li, Florian Klämpfl, Sebastian Freund, XingWen Wu, Yang Sun, Xiang Li, Michael Schmidt, Duan Ma, YouCheng Yu
Fabricating Ti alloy based dental implants with defined porous scaffold structure is a promising strategy for improving the osteoinduction of implants. In this study, we use Laser Beam Melting (LBM) 3D printing technique to fabricate porous Ti6Al4V dental implant prototypes with three controlled pore sizes (200, 350 and 500 μm). The mechanical stress distribution in the surrounding bone tissue is characterized by photoelastography and associated finite element simulation. For in-vitro studies, experiments on implants' biocompatibility and osteogenic capability are conducted to evaluate the cellular response correlated to the porous structure...
March 28, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28347923/biocompatible-3d-sers-substrate-for-trace-detection-of-amino-acids-and-melamine
#13
Elumalai Satheeshkumar, Palaniyandi Karuppaiya, Kundan Sivashanmugan, Wei-Ting Chao, Hsin-Sheng Tsay, Masahiro Yoshimura
A novel, low-cost and biocompatible three-dimensional (3D) substrate for surface-enhanced Raman spectroscopy (SERS) is fabricated using gold nanoparticles (AuNPs) loaded on cellulose paper for detection of amino acids and melamine. Dysosma pleiantha rhizome (Dp-Rhi) capped AuNPs (Dp-Rhi_AuNPs) were prepared by in situ using aqueous extract of Dp-Rhi and in situ functionalized Dp-Rhi on AuNPs surface was verified by Fourier transform infrared spectroscopy and zeta potentials analysis shows a negative (-18.4mV) surface charges, which confirm that presence of Dp-Rhi on AuNPs...
March 21, 2017: Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy
https://www.readbyqxmd.com/read/28347775/thermo-and-ph-responsive-nano-in-micro-particles-for-combinatorial-drug-delivery-to-cancer-cells
#14
André F Moreira, Diana R Dias, Elisabete C Costa, Ilídio J Correia
Drug combinatorial therapy has been gaining the scientific community attention as a suitable approach to increase treatments efficacy and promote cancer eradication. In this study, a new pH- and thermo- responsive carrier was developed by combining doxorubicin-loaded gold-core silica shell nanorods with salicylic acid loaded poly (lactic-co-glycolic acid) based microparticles (NIMPS). The obtained results showed that the drugs and nanorods release could be triggered by the near-infrared (NIR) laser irradiation or by the exposition to an acidic environment...
March 25, 2017: European Journal of Pharmaceutical Sciences
https://www.readbyqxmd.com/read/28332587/bioreactor-mechanically-guided-3d-mesenchymal-stem-cell-chondrogenesis-using-a-biocompatible-novel-thermo-reversible-methylcellulose-based-hydrogel
#15
A Cochis, S Grad, M J Stoddart, S Farè, L Altomare, B Azzimonti, M Alini, L Rimondini
Autologous chondrocyte implantation for cartilage repair represents a challenge because strongly limited by chondrocytes' poor expansion capacity in vitro. Mesenchymal stem cells (MSCs) can differentiate into chondrocytes, while mechanical loading has been proposed as alternative strategy to induce chondrogenesis excluding the use of exogenous factors. Moreover, MSC supporting material selection is fundamental to allow for an active interaction with cells. Here, we tested a novel thermo-reversible hydrogel composed of 8% w/v methylcellulose (MC) in a 0...
March 23, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28328200/fluorescence-resonance-energy-transfer-based-dna-tetrahedron-nanotweezer-for-highly-reliable-detection-of-tumor-related-mrna-in-living-cells
#16
Lei He, Dan-Qing Lu, Hao Liang, Sitao Xie, Can Luo, Miaomiao Hu, Liujun Xu, Xiaobing Zhang, Weihong Tan
Accurate detection and imaging of tumor-related mRNA in living cells hold great promise for early cancer detection. However, currently, most probes designed to image intracellular mRNA confront intrinsic interferences arising from complex biological matrices and resulting in inevitable false-positive signals. To circumvent this problem, an intracellular DNA nanoprobe, termed DNA tetrahedron nanotweezer (DTNT), was developed to reliably image tumor-related mRNA in living cells based on the FRET (fluorescence resonance energy transfer) "off" to "on" signal readout mode...
April 25, 2017: ACS Nano
https://www.readbyqxmd.com/read/28325683/biomimetic-scaffolds-with-three-dimensional-undulated-microtopographies
#17
Jonelle Z Yu, Emrullah Korkmaz, Monica I Berg, Philip R LeDuc, O Burak Ozdoganlar
Many human and animal tissues naturally possess three-dimensional (3D) micro-scale geometries enabling certain physiological functions. Absence of these microgeometries in engineered tissues may undermine the effectiveness of corresponding tissue repair and regeneration. This paper introduces a novel approach to create tissue scaffolds with biomimetic 3D undulated microtopographies. The mechanical micromilling technology is used for precise and reproducible fabrication of poly(methyl methacrylate) (PMMA) master molds with 3D undulated microtopographies...
February 14, 2017: Biomaterials
https://www.readbyqxmd.com/read/28273799/a-review-of-structure-construction-of-silk-fibroin-biomaterials-from-single-structures-to-multi-level-structures
#18
REVIEW
Yu Qi, Hui Wang, Kai Wei, Ya Yang, Ru-Yue Zheng, Ick Soo Kim, Ke-Qin Zhang
The biological performance of artificial biomaterials is closely related to their structure characteristics. Cell adhesion, migration, proliferation, and differentiation are all strongly affected by the different scale structures of biomaterials. Silk fibroin (SF), extracted mainly from silkworms, has become a popular biomaterial due to its excellent biocompatibility, exceptional mechanical properties, tunable degradation, ease of processing, and sufficient supply. As a material with excellent processability, SF can be processed into various forms with different structures, including particulate, fiber, film, and three-dimensional (3D) porous scaffolds...
March 3, 2017: International Journal of Molecular Sciences
https://www.readbyqxmd.com/read/28272767/a-high-strength-self-healable-antibacterial-and-anti-inflammatory-supramolecular-polymer-hydrogel
#19
Hongbo Wang, Hui Zhu, Weigui Fu, Yinyu Zhang, Bing Xu, Fei Gao, Zhiqiang Cao, Wenguang Liu
There is a significant cost to mitigate the infection and inflammation associated with the implantable medical devices. The development of effective antibacterial and anti-inflammatory biomaterials with novel mechanism of action has become an urgent task. In this study, a supramolecular polymer hydrogel is synthesized by the copolymerization of N-acryloyl glycinamide and 1-vinyl-1,2,4-triazole in the absence of any chemical crosslinker. The hydrogel network is crosslinked through the hydrogen bond interactions between dual amide motifs in the side chain of N-acryloyl glycinamide...
March 8, 2017: Macromolecular Rapid Communications
https://www.readbyqxmd.com/read/28269205/gelatin-methacrylamide-hydrogel-with-graphene-nanoplatelets-for-neural-cell-laden-3d-bioprinting
#20
Wei Zhu, Brent T Harris, Lijie Grace Zhang
Nervous system is extremely complex which leads to rare regrowth of nerves once injury or disease occurs. Advanced 3D bioprinting strategy, which could simultaneously deposit biocompatible materials, cells and supporting components in a layer-by-layer manner, may be a promising solution to address neural damages. Here we presented a printable nano-bioink composed of gelatin methacrylamide (GelMA), neural stem cells, and bioactive graphene nanoplatelets to target nerve tissue regeneration in the assist of stereolithography based 3D bioprinting technique...
August 2016: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
keyword
keyword
69583
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"