Read by QxMD icon Read

3D titanium implants

Juho Suojanen, Junnu Leikola, Patricia Stoor
The use of virtual surgery, patient-specific saw and drill guides, and custom-made osteosynthesis plates is rapidly spreading from deformity surgery to orthognathic surgery. Most of the commercially available systems are using computer-aided design/computer-aided manufacture (CAD/CAM) wafers to produce patient-specific saw guides. However, most plate systems provided are still the conventional "in stock" mini plates that can be individually designed by pre-bending according to the stereolithographic model of the patient...
September 23, 2016: Journal of Cranio-maxillo-facial Surgery
Sajad Arabnejad, Burnett Johnston, Michael Tanzer, Damiano Pasini
Current hip replacement femoral implants are made of fully solid materials which all have stiffness considerably higher than that of bone. This mechanical mismatch can cause significant bone resorption secondary to stress shielding, which can lead to serious complications such as peri-prosthetic fracture during or after revision surgery. In this work, a high strength fully porous material with tunable mechanical properties is introduced for use in hip replacement design. The implant macro geometry is based off of a short stem taper-wedge implant compatible with minimally invasive hip replacement surgery...
September 24, 2016: Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society
Sorin Mihali, Silvana Canjau, Emanuel Bratu, Hom-Lay Wang
PURPOSE: The aim of this study was to evaluate, in a case control study, the esthetic and functional clinical performance of ceramic inlays used for covering the screw access hole in single monolithic lithium disilicate full-contour crowns bonded on computer-aided design/computer-aided manufacturing (CAD/CAM) prefabricated titanium abutments in order to eliminate the drawbacks of alternative restorative methods. MATERIALS AND METHODS: Twenty-eight patients with missing teeth in the lateral areas (premolars and molars) received screw-retained implant restorations...
September 2016: International Journal of Oral & Maxillofacial Implants
Miguel Castilho, Jorge Rodrigues, Elke Vorndran, Uwe Gbureck, Carlos Quental, João Folgado, Paulo R Fernandes
Tibial tuberosity advancement (TTA) is a promising method for the treatment of cruciate ligament rupture in dogs that usually implies the implantation of a titanium cage as bone implant. This cage is non-biodegradable and fails in providing adequate implant-bone tissue integration. The objective of this work is to propose a new process chain for designing and manufacturing an alternative biodegradable cage that can fulfill specific patient requirements. A three-dimensional finite element model (3D FEM) of the TTA system was first created to evaluate the mechanical environment at cage domain during different stages of the dog walk...
September 2, 2016: Journal of the Mechanical Behavior of Biomedical Materials
Satoshi Horita, Tsutomu Sugiura, Kazuhiko Yamamoto, Kazuhiro Murakami, Yuichiro Imai, Tadaaki Kirita
PURPOSE: The purpose of this study was to investigate the biomechanical behavior of immediately loaded implants in an edentulous mandible according to the "All-on-Four" concept. METHODS: A 3D-finite element model of an edentulous mandible was constructed. Four implants were placed between the bilateral mental foramen according to "All-on-Four" concept. A framework made of titanium or acrylic resin between the bilateral first molars was modeled. Immediate loading and a delayed loading protocol were simulated...
September 5, 2016: Journal of Prosthodontic Research
Karan Gulati, Masakazu Kogawa, Matthew Prideaux, David M Findlay, Gerald J Atkins, Dusan Losic
There is an ongoing demand for new approaches for treating localized bone pathologies. Here we propose a new strategy for treatment of such conditions, via local delivery of hormones/drugs to the trauma site using drug releasing nano-engineered implants. The proposed implants were prepared in the form of small Ti wires/needles with a nano-engineered oxide layer composed of array of titania nanotubes (TNTs). TNTs implants were inserted into a 3D collagen gel matrix containing human osteoblast-like, and the results confirmed cell migration onto the implants and their attachment and spread...
December 1, 2016: Materials Science & Engineering. C, Materials for Biological Applications
Cláudia Lopes Brilhante Bhering, Marcelo Ferraz Mesquita, Daniel Takanori Kemmoku, Pedro Yoshito Noritomi, Rafael Leonardo Xediek Consani, Valentim Adelino Ricardo Barão
We evaluated two treatment concepts for the rehabilitation of moderate atrophic maxilla with dental implants (all-on-four and all-on-six) and the effect of framework material on the stress distribution of implant-support system. A three-dimensional finite element model based on a prototype was built to simulate an entirely edentulous maxilla with moderate sinus pneumatization that was rehabilitated with a full-arch fixed dental prosthesis. Four standard implants were positioned according to the all-on-four concept and four standard implants and two short implants were placed according to the all-on-six concept...
December 1, 2016: Materials Science & Engineering. C, Materials for Biological Applications
Daeho Hong, Da-Tren Chou, Oleg I Velikokhatnyi, Abhijit Roy, Boeun Lee, Isaac Swink, Ilona Issaev, Howard A Kuhn, Prashant N Kumta
: 3D printing of various biomaterials including titanium and stainless steel has been studied for treating patients with cranio-maxillofacial bone defect. The potential long term complications with use of inert biometals have opened the opportunities for use of biodegradable metals in the clinical arena. The authors previously reported that binder-jet 3D printing technique enhanced the degradation rates of biodegradable Fe-Mn alloy by creating engineered micropores rendering the system attractive as biodegradable implantable devices...
November 2016: Acta Biomaterialia
Muhanad M Hatamleh, Gurprit Bhamrah, Francine Ryba, Gavin Mack, Chrisopher Huppa
This patient report describes simultaneous bimaxillary orthognathic surgery and mandibular reconstruction by means of three-dimensional (3D) planning, 3D printed biocompatible surgical wafers, and 3D selective-laser sintered titanium implant. A 26-year-old male patient presented with a left mandibular defect secondary to trauma. The whole body of the mandible on the left hand side was deficient with a narrow connection with the remaining left condyle. He had undergone orthodontic treatment for 18 months and was ready to undergo bimaxillary orthognathic surgery...
October 2016: Journal of Craniofacial Surgery
Elisângela Perez de Freitas, Sheila Canevese Rahal, Antonio Carlos Shimano, Jorge Vicente Lopes da Silva, Pedro Yoshito Noritomi, Alexander Oliveira El-Warrak, Alessandra Melchert
With regard to the canine mandible, a mistaken concept of application is to assume that systemic plate-bone resistance is provided by the implant so that biomechanical position could be ignored. Because the alveolar border of the mandible is a tensile zone, the plate would ideally be positioned near this area while avoiding important structures. The aim of this study was to develop 2 bridging plates for the treatment of a segmental bone defect of the canine mandible using monocortical screws to avoid damage to the tooth roots and remaining neurovascular structures...
March 2016: Journal of Veterinary Dentistry
Gabriela S Liedke, Rubens Spin-Neto, Heloisa E D da Silveira, Lars Schropp, Andreas Stavropoulos, Ann Wenzel
OBJECTIVES: To evaluate factors with impact on the conspicuity (possibility to detect) of the buccal bone condition around dental implants in cone beam computed tomography (CBCT) imaging. MATERIAL AND METHODS: Titanium (Ti) or zirconia (Zr) implants and abutments were inserted into 40 bone blocks in a way to obtain variable buccal bone thicknesses. Three combinations regarding the implant-abutment metal (TiTi, TiZr, or ZrZr) and the number of implants (one, two, or three) were assessed...
July 22, 2016: Clinical Oral Implants Research
Shailly H Jariwala, Hwabok Wee, Evan P Roush, Tiffany L Whitcomb, Christopher Murter, Gery Kozlansky, Akhlesh Lakhtakia, Allen R Kunselman, Henry J Donahue, April D Armstrong, Gregory S Lewis
The time-course of cancellous bone regeneration surrounding mechanically loaded implants affects implant fixation, and is relevant to determining optimal rehabilitation protocols following orthopaedic surgeries. We investigated the influence of controlled mechanical loading of titanium-coated polyether-ether ketone (PEEK) implants on osseointegration using time-lapsed, non-invasive, in vivo micro-computed tomography (micro-CT) scans. Implants were inserted into proximal tibial metaphyses of both limbs of eight female Sprague-Dawley rats...
July 6, 2016: Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society
Peng Xiu, Zhaojun Jia, Jia Lv, Chuan Yin, Yan Cheng, Ke Zhang, Chunli Song, Huijie Leng, Yufeng Zheng, Hong Cai, Zhongjun Liu
3D printed porous titanium (Ti) holds enormous potential for load-bearing orthopedic applications. Although the 3D printing technique has good control over the macro-sturctures of porous Ti, the surface properties that affect tissue response are beyond its control, adding the need for tailored surface treatment to improve its osseointegration capacity. Here, the one step microarc oxidation (MAO) process was applied to a 3D printed porous Ti6Al4V (Ti64) scaffold to endow the scaffold with a homogeneous layer of microporous TiO2 and significant amounts of amorphous calcium-phosphate...
July 20, 2016: ACS Applied Materials & Interfaces
Samy Tunchel, Alberto Blay, Roni Kolerman, Eitan Mijiritsky, Jamil Awad Shibli
This prospective 3-year follow-up clinical study evaluated the survival and success rates of 3DP/AM titanium dental implants to support single implant-supported restorations. After 3 years of loading, clinical, radiographic, and prosthetic parameters were assessed; the implant survival and the implant-crown success were evaluated. Eighty-two patients (44 males, 38 females; age range 26-67 years) were enrolled in the present study. A total of 110 3DP/AM titanium dental implants (65 maxilla, 45 mandible) were installed: 75 in healed alveolar ridges and 35 in postextraction sockets...
2016: International Journal of Dentistry
S Amin Yavari, L Loozen, F L Paganelli, S Bakhshandeh, K Lietaert, J A Groot, A C Fluit, C H E Boel, J Alblas, H C Vogely, H Weinans, A A Zadpoor
Additive manufacturing (3D printing) has enabled fabrication of geometrically complex and fully interconnected porous biomaterials with huge surface areas that could be used for biofunctionalization to achieve multifunctional biomaterials. Covering the huge surface area of such porous titanium with nanotubes has been already shown to result in improved bone regeneration performance and implant fixation. In this study, we loaded TiO2 nanotubes with silver antimicrobial agents to equip them with an additional biofunctionality, i...
July 13, 2016: ACS Applied Materials & Interfaces
Gagandeep Kaur, Tamsyn Willsmore, Karan Gulati, Irene Zinonos, Ye Wang, Mima Kurian, Shelley Hay, Dusan Losic, Andreas Evdokiou
Adverse complications associated with systemic administration of anti-cancer drugs are a major problem in cancer therapy in current clinical practice. To increase effectiveness and reduce side effects, localized drug delivery to tumour sites requiring therapy is essential. Direct delivery of potent anti-cancer drugs locally to the cancer site based on nanotechnology has been recognised as a promising alternative approach. Previously, we reported the design and fabrication of nano-engineered 3D titanium wire based implants with titania (TiO2) nanotube arrays (Ti-TNTs) for applications such as bone integration by using in-vitro culture systems...
September 2016: Biomaterials
S Sivaram Kaushik, Robin Karr, Matthew Runquist, Cathy Marszalkowski, Abhishiek Sharma, Scott D Rand, Dennis Maiman, Kevin M Koch
PURPOSE: To evaluate magnetic resonance imaging (MRI) artifacts near metallic spinal instrumentation using both conventional metal artifact reduction sequences (MARS) and 3D multispectral imaging sequences (3D-MSI). MATERIALS AND METHODS: Both MARS and 3D-MSI images were acquired in 10 subjects with titanium spinal hardware on a 1.5T GE 450W scanner. Clinical computed tomography (CT) images were used to measure the volume of the implant using seed-based region growing...
May 26, 2016: Journal of Magnetic Resonance Imaging: JMRI
Eun-Kyung Park, Jun-Young Lim, In-Sik Yun, Ju-Seong Kim, Su-Heon Woo, Dong-Seok Kim, Kyu-Won Shim
The authors studied to demonstrate the efficacy of custom-made three-dimensional (3D)-printed titanium implants for reconstructing skull defects. From 2013 to 2015, 21 patients (8-62 years old, mean = 28.6-year old; 11 females and 10 males) with skull defects were treated. Total disease duration ranged from 6 to 168 months (mean = 33.6 months). The size of skull defects ranged from 84 × 104 to 154 × 193 mm. Custom-made implants were manufactured by Medyssey Co, Ltd (Jecheon, South Korea) using 3D computed tomography data, Mimics software, and an electron beam melting machine...
June 2016: Journal of Craniofacial Surgery
Hua Geng, Naomi M Todd, Aine Devlin-Mullin, Gowsihan Poologasundarampillai, Taek Bo Kim, Kamel Madi, Sarah Cartmell, Christopher A Mitchell, Julian R Jones, Peter D Lee
A correlative imaging methodology was developed to accurately quantify bone formation in the complex lattice structure of additive manufactured implants. Micro computed tomography (μCT) and histomorphometry were combined, integrating the best features from both, while demonstrating the limitations of each imaging modality. This semi-automatic methodology registered each modality using a coarse graining technique to speed the registration of 2D histology sections to high resolution 3D μCT datasets. Once registered, histomorphometric qualitative and quantitative bone descriptors were directly correlated to 3D quantitative bone descriptors, such as bone ingrowth and bone contact...
June 2016: Journal of Materials Science. Materials in Medicine
Kousha Azimi, Ian A Prescott, Robert A Marino, Andrew Winterborn, Ron Levy
BACKGROUND: We present a new halo technique for head fixation of non-human primates during electrophysiological recording experiments. Our aim was to build on previous halo designs in order to create a simple low profile system that provided long-term stability. NEW METHOD: Our design incorporates sharp skull pins that are directly threaded through a low set halo frame and are seated into implanted titanium foot plates on the skull. The inwardly directed skull pins provide an easily calibrated force against the skull...
August 1, 2016: Journal of Neuroscience Methods
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"