keyword
MENU ▼
Read by QxMD icon Read
search

Engineered myocardium

keyword
https://www.readbyqxmd.com/read/28335261/nanomaterials-for-cardiac-myocyte-tissue-engineering
#1
REVIEW
Rodolfo Amezcua, Ajay Shirolkar, Carolyn Fraze, David A Stout
Since their synthesizing introduction to the research community, nanomaterials have infiltrated almost every corner of science and engineering. Over the last decade, one such field has begun to look at using nanomaterials for beneficial applications in tissue engineering, specifically, cardiac tissue engineering. During a myocardial infarction, part of the cardiac muscle, or myocardium, is deprived of blood. Therefore, the lack of oxygen destroys cardiomyocytes, leaving dead tissue and possibly resulting in the development of arrhythmia, ventricular remodeling, and eventual heart failure...
July 19, 2016: Nanomaterials
https://www.readbyqxmd.com/read/28323876/pim1-minicircle-as-a-therapeutic-treatment-for-myocardial-infarction
#2
Nan Liu, Bingyan J Wang, Kathleen M Broughton, Roberto Alvarez, Sailay Siddiqi, Rebeca Loaiza, Nicky Nguyen, Pearl Quijada, Natalie Gude, Mark A Sussman
PIM1, a pro-survival gene encoding a serine/ threonine kinase, influences cell proliferation and survival. Modification of cardiac progenitor cells (CPCs) or cardiomyocytes with PIM1 using a lentivirus-based delivery method showed long-term improved cardiac function after myocardial infarction (MI). However, lentivirus based delivery methods have stringent FDA regulation with respect to clinical trials. To provide an alternative and low risk PIM1 delivery method, this study examined the use of a non-viral modified plasmid-minicircle (MC) as a vehicle to deliver PIM1 into mouse CPCs (mCPCs) in vitro and the myocardium in vivo...
2017: PloS One
https://www.readbyqxmd.com/read/28297585/electromechanical-conditioning-of-adult-progenitor-cells-improves-recovery-of-cardiac-function-after-myocardial-infarction
#3
Aida Llucià-Valldeperas, Carolina Soler-Botija, Carolina Gálvez-Montón, Santiago Roura, Cristina Prat-Vidal, Isaac Perea-Gil, Benjamin Sanchez, Ramon Bragos, Gordana Vunjak-Novakovic, Antoni Bayes-Genis
Cardiac cells are subjected to mechanical and electrical forces, which regulate gene expression and cellular function. Therefore, in vitro electromechanical stimuli could benefit further integration of therapeutic cells into the myocardium. Our goals were (a) to study the viability of a tissue-engineered construct with cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs) and (b) to examine the effect of electromechanically stimulated cardiac ATDPCs within a myocardial infarction (MI) model in mice for the first time...
March 2017: Stem Cells Translational Medicine
https://www.readbyqxmd.com/read/28289246/the-heart-and-great-vessels
#4
Ekene Onwuka, Nakesha King, Eric Heuer, Christopher Breuer
Cardiovascular disease is the leading cause of mortality worldwide. We have made large strides over the past few decades in management, but definitive therapeutic options to address this health-care burden are still limited. Given the ever-increasing need, much effort has been spent creating engineered tissue to replaced diseased tissue. This article gives a general overview of this work as it pertains to the development of great vessels, myocardium, and heart valves. In each area, we focus on currently studied methods, limitations, and areas for future study...
March 13, 2017: Cold Spring Harbor Perspectives in Medicine
https://www.readbyqxmd.com/read/28281243/mimicking-cardiac-fibrosis-in-a-dish-fibroblast-density-rather-than-collagen-density-weakens-cardiomyocyte-function
#5
Ariane C C van Spreeuwel, Noortje A M Bax, Bastiaan J van Nierop, Annemieke Aartsma-Rus, Marie-José T H Goumans, Carlijn V C Bouten
Cardiac fibrosis is one of the most devastating effects of cardiac disease. Current in vitro models of cardiac fibrosis do not sufficiently mimic the complex in vivo environment of the cardiomyocyte. We determined the local composition and mechanical properties of the myocardium in established mouse models of genetic and acquired fibrosis and tested the effect of myocardial composition on cardiomyocyte contractility in vitro by systematically manipulating the number of fibroblasts and collagen concentration in a platform of engineered cardiac microtissues...
March 9, 2017: Journal of Cardiovascular Translational Research
https://www.readbyqxmd.com/read/28244821/regulation-of-the-microenvironment-for-cardiac-tissue-engineering
#6
Maureen Wanjare, Ngan F Huang
The microenvironment of myocardium plays an important role in the fate and function of cardiomyocytes (CMs). Cardiovascular tissue engineering strategies commonly utilize stem cell sources in conjunction with microenvironmental cues that often include biochemical, electrical, spatial and biomechanical factors. Microenvironmental stimulation of CMs, in addition to the incorporation of intercellular interactions from non-CMs, results in the generation of engineered cardiac constructs. Current studies suggest that use of these factors when engineering cardiac constructs improve cardiac function when implanted in vivo...
March 2017: Regenerative Medicine
https://www.readbyqxmd.com/read/28181589/developmental-stage-dependent-effects-of-cardiac-fibroblasts-on-function-of-stem-cell-derived-engineered-cardiac-tissues
#7
Brian Liau, Christopher P Jackman, Yanzhen Li, Nenad Bursac
We investigated whether the developmental stage of mouse cardiac fibroblasts (CFs) influences the formation and function of engineered cardiac tissues made of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs). Engineered cardiac tissue patches were fabricated by encapsulating pure mESC-CMs, mESC-CMs + adult CFs, or mESC-CMs + fetal CFs in fibrin-based hydrogel. Tissue patches containing fetal CFs exhibited higher velocity of action potential propagation and contractile force amplitude compared to patches containing adult CFs, while pure mESC-CM patches did not form functional syncytium...
February 9, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28167635/defined-engineered-human-myocardium-with-advanced-maturation-for-applications-in-heart-failure-modelling-and-repair
#8
Malte Tiburcy, James E Hudson, Paul Balfanz, Susanne F Schlick, Tim Meyer, Mei-Ling Chang Liao, Elif Levent, Farah Raad, Sebastian Zeidler, Edgar Wingender, Johannes Riegler, Mouer Wang, Joseph D Gold, Itzhak Kehat, Erich Wettwer, Ursula Ravens, Pieterjan Dierickx, Linda van Laake, Marie-José Goumans, Sara Khadjeh, Karl Toischer, Gerd Hasenfuss, Larry A Couture, Andreas Unger, Wolfgang A Linke, Toshiyuki Araki, Benjamin Neel, Gordon Keller, Lior Gepstein, Joseph C Wu, Wolfram-Hubertus Zimmermann
BACKGROUND: -Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modelling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) towards an adult phenotype under defined conditions. METHODS: -We systematically investigated cell composition, matrix and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions...
February 6, 2017: Circulation
https://www.readbyqxmd.com/read/28156084/bone-marrow-derived-mesenchymal-stem-cell-loaded-fibrin-patches-act-as-a-reservoir-of-paracrine-factors-in-chronic-myocardial-infarction
#9
Eléonore Blondiaux, Laetitia Pidial, Gwennhael Autret, Gabriel Rahmi, Daniel Balvay, Etienne Audureau, Claire Wilhelm, Coralie L Guerin, Patrick Bruneval, Jean-Sébastien Silvestre, Philippe Menasché, Olivier Clément
The combination of mesenchymal stem cells and tissue-engineered fibrin patches improves the therapeutic efficacy of stem cells. In vivo cardiac magnetic resonance (4.7 Tesla) and ex vivo high-spatial resolution CMR were used to track the fate of human bone marrow-derived mesenchymal stem cell (BMSC) delivered on an epicardial scaffold and more specifically assess their potential intramyocardial migration. Fifty-seven nude rats underwent permanent coronary artery ligation. Two months later, those with a left ventricular ejection fraction ≤55% were randomly allocated to receive a patch loaded with human BMSC (BMSC-P, n = 10), a patch loaded with BMSCs labelled with iron oxide nanoparticles (BMSC*-P, n = 12), an acellular patch (A-P, n = 8) or to serve as sham-operated animals (SHAM, n = 7)...
February 3, 2017: Journal of Tissue Engineering and Regenerative Medicine
https://www.readbyqxmd.com/read/28103423/adipose-derived-perivascular-mesenchymal-stromal-stem-cells-promote-functional-vascular-tissue-engineering-for-cardiac-regenerative-purposes
#10
Justin Morrissette-McAlmon, Adriana Blazeski, Sarah Somers, Geran Kostecki, Leslie Tung, Warren L Grayson
Cardiac tissue engineering approaches have the potential to regenerate functional myocardium with intrinsic vascular networks. In this study, we compared the relative effects of human adipose-derived stem/stromal cells (hASCs) and human dermal fibroblasts (hDFs) in co-cultures with neonatal rat ventricular cardiomyocytes (NRVCMs) and human umbilical vein endothelial cells (HUVECs). We found that at the same ratios of NRVCM:hASC and NRVCM:hDF, the hASC co-cultures displayed shorter action potentials and maintained capture at faster pacing rates...
January 19, 2017: Journal of Tissue Engineering and Regenerative Medicine
https://www.readbyqxmd.com/read/28063988/engineered-extracellular-microenvironment-with-a-tunable-mechanical-property-for-controlling-cell-behavior-and-cardiomyogenic-fate-of-cardiac-stem-cells
#11
Min-Young Choi, Jong-Tae Kim, Won-Jin Lee, Yunki Lee, Kyung Min Park, Young-Il Yang, Ki Dong Park
Endogenous cardiac stem cells (CSCs) are known to play a certain role in the myocardial homeostasis of the adult heart. The extracellular matrix (ECM) surrounding CSCs provides mechanical signals to regulate a variety of cell behaviors, yet the impact in the adult heart of these mechanical properties of ECM on CSC renewal and fate decisions is mostly unknown. To elucidate CSC mechanoresponses at the individual cell and myocardial level, we used the sol-to-gel transitional gelatin-poly(ethylene glycol)-tyramine (GPT) hydrogel with a tunable mechanical property to construct a three-dimensional (3D) matrix for culturing native myocardium and CSCs...
January 4, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28029762/prevascularization-of-decellularized-porcine-myocardial-slice-for-cardiac-tissue-engineering
#12
Pawan Kc, Mickey Shah, Jun Liao, Ge Zhang
Prevacularization strategies have been implemented in tissue engineering to generate microvasculature networks within a scaffold prior to implantation. Prevascularizing scaffolds will shorten the time of functional vascular perfusion with host upon implantation. In this study, we explored key variables affecting the interaction between decellularized porcine myocardium slices (dPMSs) and reseeded stem cells toward the fabrication of prevascularized cardiac tissue. Our results demonstrated that dPMS supports attachment of human mesenchymal stem cells (hMSCs) and rat adipose derived stem cells (rASCs) with high viability...
January 10, 2017: ACS Applied Materials & Interfaces
https://www.readbyqxmd.com/read/28029165/efficiency-of-endothelial-dysfunctioncorrection-in-children-residents-of-radioactively-contaminated-areas-using-the-method-of-intermittent-normobaric-hypoxi-therapy
#13
Ye I Stepanova, V Ya Berezovsky, I Ye Kolpakov, V H Kondrashova, V Yu Vdovenko, O M Lytvynets, L M Lisukha, V M Zyhalo, V I Kolos, L P Mishchenko
Objective is to evaluate the effectiveness of intermittent normobaric hypoxi therapy as the means that can posi tively influence on the different links in the pathogenesis of endothelial dysfunction in children residents of radioactively contaminated areas. MATERIALS AND METHODS: Disorders of personal and emotional sphere, symptoms of asthenic vegetative and neurot ic character, the signs of the cardiovascular and respiratory systems, abdominal and dyspeptic syndromes are attrib uted to the clinical signs of endothelial dysfunction...
December 2016: Problemy Radiat︠s︡iĭnoï Medyt︠s︡yny Ta Radiobiolohiï
https://www.readbyqxmd.com/read/28007615/human-ipsc-derived-cardiomyocytes-and-tissue-engineering-strategies-for-disease-modeling-and-drug-screening
#14
REVIEW
Alec S T Smith, Jesse Macadangdang, Winnie Leung, Michael A Laflamme, Deok-Ho Kim
Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models...
January 2017: Biotechnology Advances
https://www.readbyqxmd.com/read/27956366/biohybrid-cardiac-ecm-based-hydrogels-improve-long-term-cardiac-function-post-myocardial-infarction
#15
Yael Efraim, Hadar Sarig, Noa Cohen Anavy, Udi Sarig, Elio de Berardinis, Su-Yin Chaw, Muthukumar Krishnamoorthi, Jérôme Kalifa, Hanumakumar Bogireddi, Thang Vu Duc, Theodoros Kofidis, Limor Baruch, Freddy Y C Boey, Subbu S Venkatraman, Marcelle Machluf
Injectable scaffolds for cardiac tissue regeneration are a promising therapeutic approach for progressive heart failure following myocardial infarction (MI). Their major advantage lies in their delivery modality that is considered minimally invasive due to their direct injection into the myocardium. Biomaterials comprising such scaffolds should mimic the cardiac tissue in terms of composition, structure, mechanical support, and most importantly, bioactivity. Nonetheless, natural biomaterial-based gels may suffer from limited mechanical strength, which often fail to provide the long-term support required by the heart for contraction and relaxation...
December 9, 2016: Acta Biomaterialia
https://www.readbyqxmd.com/read/27909510/interactive-in-vitro-training-in-physics-of-radiofrequency-ablation-for-physicians-and-medical-engineering-students
#16
REVIEW
Haber T, Kleister G, Selman B, Härtig J, Melichercik J, Ismer B
Radiofrequency (RF) ablation requires a complex set of devices as well as profound electrophysiological experience and substantial knowledge of physical science basics. To establish RF ablation in-vitro teaching-system, six workstations were equipped with computer-controlled RF ablation generators. Universal connection boxes allow ablation-essays with catheters of different make and model. Special wetlabs were developed combining a basin containing isotonic saline solution with a thermostat and a pump to simulate blood flow...
June 2016: Journal of Atrial Fibrillation
https://www.readbyqxmd.com/read/27869075/-cell-therapies-for-cardiopathies-the-shift-of-paradigms
#17
Jean-Thomas Vilquin, Jessy Etienne
Heart failure is a major concern for public health systems, and several approaches of cellular therapy are being investigated with the goal of improving the function of these failing hearts. Many cell types have been used (skeletal myoblasts, hematopoietic, endothelial or mesenchymal progenitors, cardiac cells…), most often in the indication of post-ischemic heart failure rather than in the indication of genetic dilated cardiomyopathy. It is easier, indeed, to target a restricted area than the whole myocardium...
November 2016: Médecine Sciences: M/S
https://www.readbyqxmd.com/read/27834123/translational-applications-of-tissue-engineering-in-cardiovascular-medicine
#18
Y Murat Elçin, Arin Dogan, Eser Elçin
Cardiovascular diseases are the leading cause of worldwide deaths. Current paradigm in medicine seeks novel approaches for the treatment of progressive or end-stage diseases. The organ transplantation option is limited in availability and unfortunately, a great number of patients are lost while waiting for donor organs. Animal studies have shown that upon myocardial infarction, it may be possible to stop adverse remodeling in its tracks and reverse with tissue engineering methods. Regaining the myocardium function and avoiding further deterioration towards heart failure can benefit millions of people with a significantly lesser burden on healthcare systems worldwide...
November 11, 2016: Current Pharmaceutical Design
https://www.readbyqxmd.com/read/27833567/myofibroblasts-electrotonically-coupled-to-cardiomyocytes-alter-conduction-insights-at-the-cellular-level-from-a-detailed-in-silico-tissue-structure-model
#19
Florian Jousset, Ange Maguy, Stephan Rohr, Jan P Kucera
Fibrotic myocardial remodeling is typically accompanied by the appearance of myofibroblasts (MFBs). In vitro, MFBs were shown to slow conduction and precipitate ectopic activity following gap junctional coupling to cardiomyocytes (CMCs). To gain further mechanistic insights into this arrhythmogenic MFB-CMC crosstalk, we performed numerical simulations in cell-based high-resolution two-dimensional tissue models that replicated experimental conditions. Cell dimensions were determined using confocal microscopy of single and co-cultured neonatal rat ventricular CMCs and MFBs...
2016: Frontiers in Physiology
https://www.readbyqxmd.com/read/27826001/fibers-for-hearts-a-critical-review-on-electrospinning-for-cardiac-tissue-engineering
#20
REVIEW
Maria Kitsara, Onnik Agbulut, Dimitrios Kontziampasis, Yong Chen, Philippe Menasché
Cardiac cell therapy holds a real promise for improving heart function and especially of the chronically failing myocardium. Embedding cells into 3D biodegradable scaffolds may better preserve cell survival and enhance cell engraftment after transplantation, consequently improving cardiac cell therapy compared with direct intramyocardial injection of isolated cells. The primary objective of a scaffold used in tissue engineering is the recreation of the natural 3D environment most suitable for an adequate tissue growth...
November 5, 2016: Acta Biomaterialia
keyword
keyword
6921
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"