Read by QxMD icon Read

Plant genomics

Anastasia K Atabekova, Anna V Pankratenko, Svetlana S Makarova, Ekaterina A Lazareva, Robert A Owens, Andrey G Solovyev, Sergey Y Morozov
Human B-cell receptor-associated protein BAP31 (HsBAP31) is the endoplasmic reticulum-resident protein involved in protein sorting and transport as well as pro-apoptotic signaling. Plant orthologs of HsBAP31 termed 'plant BAP-like proteins' (PBL proteins) have thus far remained unstudied. Recently, the PBL protein from Nicotiana tabacum (NtPBL) was identified as an interactor of Nt-4/1, a plant protein known to interact with plant virus movement proteins and affect the long-distance transport of potato spindle tuber viroid (PSTVd) via the phloem...
October 19, 2016: Biochimie
Masayuki Tsuzuki, Yuichiro Watanabe
Small RNAs are key molecules in RNA silencing pathways that exert the sequence-specific regulation of gene expression and chromatin modifications in many eukaryotes. In plants, endogenous small RNAs, including microRNAs (miRNAs), trans-acting short interfering RNAs (tasiRNAs), and heterochromatic siRNAs (hc-siRNAs), play an important role in switching or orchestrating biological processes during the development and at the onset of stress responses. These endogenous and exogenous small RNAs are mainly 20-24 nucleotides in length...
2017: Methods in Molecular Biology
Pavlina Sasheva, Ueli Grossniklaus
Over the last years, it has become increasingly clear that environmental influences can affect the epigenomic landscape and that some epigenetic variants can have heritable, phenotypic effects. While there are a variety of methods to perform genome-wide analyses of DNA methylation in model organisms, this is still a challenging task for non-model organisms without a reference genome. Differentially methylated region-representational difference analysis (DMR-RDA) is a sensitive and powerful PCR-based technique that isolates DNA fragments that are differentially methylated between two otherwise identical genomes...
2017: Methods in Molecular Biology
Palak Kathiria, Igor Kovalchuk
Epigenetic regulation in the plant genome is associated with the determination of expression patterns of various genes. Methylation of DNA at cytosine residues is one of the mechanisms of epigenetic regulation and has been a subject of various studies. Various techniques have been developed to analyze DNA methylation, most of which involve isolation of chromatin from cells and further in vitro studies. Limited techniques are available for in situ study of DNA methylation in plants. Here, we present such an in situ method for DNA methylation analysis which has high sensitivity and good reproducibility...
2017: Methods in Molecular Biology
Andriy Bilichak, Igor Kovalchuk
DNA methylation is a reversible covalent chemical modification of DNA intended to regulate chromatin structure and gene expression in a cell- and tissue-specific manner and in response to the environment. Cytosine methylation is predominantly occurring in plants, and cytosine nucleotides in plants can be methylated at symmetrical (CpG and CpHpG) and nonsymmetrical sites. Although there exists a number of various methods for the detection of cytosine methylation, most of them are either laborious or expensive or both...
2017: Methods in Molecular Biology
Stefan Grob, Ueli Grossniklaus
Nuclear organization and higher-order chromosome structure in interphase nuclei are thought to have important effects on fundamental biological processes, including chromosome condensation, replication, and transcription. Until recently, however, nuclear organization could only be analyzed microscopically. The development of chromatin conformation capture (3C)-based techniques now allows a detailed look at chromosomal architecture from the level of individual loci to the entire genome. Here we provide a robust Hi-C protocol, allowing the analysis of nuclear organization in nuclei from different wild-type and mutant plant tissues...
2017: Methods in Molecular Biology
Wanhui You, Stéphane Pien, Ueli Grossniklaus
Epigenetic control of plant development via histone modifications is involved in different processes ranging from embryonic development, vegetative development, flowering time control, floral organ development, to pollen tube growth. The identification of an increasing number of epigenetically regulated processes was greatly advanced by methods allowing the survey of genome-wide histone modifications and chromatin-protein interactions. However, genome-wide approaches are too broad to access in detail a large number of histone modifications taking place at a single locus...
2017: Methods in Molecular Biology
Marie Umber, Rose-Marie Gomez, Suzia Gélabale, Lydiane Bonheur, Claudie Pavis, Pierre-Yves Teycheney
The complete genome sequence of Dioscorea bacilliform TR virus (DBTRV) was determined. The closest relatives of DBTRV are Dioscorea bacilliform AL virus (DBALV) and Dioscorea bacilliform RT virus 1 (DBRTV1). Specific primers were designed and used to determine the prevalence of DBTRV in a yam germplasm collection. It was found that this virus infects Dioscorea alata and D. trifida plants in Guadeloupe and French Guyana. DTRBV was not detected in any of the tested D. cayenensis-rotundata accessions. In silico analysis provided evidence for the presence of DBTRV-like endogenous sequences in the genome of D...
October 21, 2016: Archives of Virology
(no author information available yet)
Many disciplines, from human genetics and oncology to plant breeding, microbiology and virology, commonly face the challenge of analyzing rapidly increasing numbers of genomes. In case of Homo sapiens, the number of sequenced genomes will approach hundreds of thousands in the next few years. Simply scaling up established bioinformatics pipelines will not be sufficient for leveraging the full potential of such rich genomic data sets. Instead, novel, qualitatively different computational methods and paradigms are needed...
October 21, 2016: Briefings in Bioinformatics
Allan M Showalter, Brian D Keppler, Xiao Liu, Jens Lichtenberg, Lonnie R Welch
BACKGROUND: Hydroxyproline-rich glycoproteins (HRGPs) constitute a plant cell wall protein superfamily that functions in diverse aspects of growth and development. This superfamily contains three members: the highly glycosylated arabinogalactan-proteins (AGPs), the moderately glycosylated extensins (EXTs), and the lightly glycosylated proline-rich proteins (PRPs). Chimeric and hybrid HRGPs, however, also exist. A bioinformatics approach is employed here to identify and classify AGPs, EXTs, PRPs, chimeric HRGPs, and hybrid HRGPs from the proteins predicted by the completed genome sequence of poplar (Populus trichocarpa)...
October 21, 2016: BMC Plant Biology
Hongwu Wang, Kun Li, Xiaojiao Hu, Zhifang Liu, Yujin Wu, Changling Huang
BACKGROUND: Plant digestibility of silage maize (Zea mays L.) has a large influence on nutrition intake for animal feeding. Improving forage quality will enhance the utilization efficiency and feeding value of forage maize. Dissecting the genetic basis of forage quality will improve our understanding of the complex nature of cell wall biosynthesis and degradation, which is also helpful for breeding good quality silage maize. RESULTS: Acid detergent fiber (ADF), neutral detergent fiber (NDF) and in vitro dry matter digestibility (IVDMD) of stalk were evaluated in a diverse maize population, which is comprised of 368 inbred lines and planted across seven environments...
October 21, 2016: BMC Plant Biology
Chaoyun Hao, Zhiqiang Xia, Rui Fan, Lehe Tan, Lisong Hu, Baoduo Wu, Huasong Wu
BACKGROUND: Piper nigrum L., or "black pepper", is an economically important spice crop in tropical regions. Black pepper production is markedly affected by foot rot disease caused by Phytophthora capsici, and genetic improvement of black pepper is essential for combating foot rot diseases. However, little is known about the mechanism of anti- P. capsici in black pepper. The molecular mechanisms underlying foot rot susceptibility were studied by comparing transcriptome analysis between resistant (Piper flaviflorum) and susceptible (Piper nigrum cv...
October 21, 2016: BMC Genomics
Kristin Bösch, Lamprinos Frantzeskakis, Miroslav Vraneš, Jörg Kämper, Kerstin Schipper, Vera Göhre
Gene deletion plays an important role in the analysis of gene function. One of the most efficient methods to disrupt genes in a targeted manner is the replacement of the entire gene with a selectable marker via homologous recombination. During homologous recombination, exchange of DNA takes place between sequences with high similarity. Therefore, linear genomic sequences flanking a target gene can be used to specifically direct a selectable marker to the desired integration site. Blunt ends of the deletion construct activate the cell's DNA repair systems and thereby promote integration of the construct either via homologous recombination or by non-homologous-end-joining...
September 30, 2016: Journal of Visualized Experiments: JoVE
Elizabeth M Dlugosz, Scott C Lenaghan, C Neal Stewart
Over the last decade there has been a resurgence in the use of plant protoplasts that range from model species to crop species, for analysis of signal transduction pathways, transcriptional regulatory networks, gene expression, genome-editing, and gene-silencing. Furthermore, significant progress has been made in the regeneration of plants from protoplasts, which has generated even more interest in the use of these systems for plant genomics. In this work, a protocol has been developed for automation of protoplast isolation and transformation from a 'Bright Yellow' 2 (BY-2) tobacco suspension culture using a robotic platform...
September 27, 2016: Journal of Visualized Experiments: JoVE
Delphine Mieulet, Sylvie Jolivet, Maud Rivard, Laurence Cromer, Aurore Vernet, Pauline Mayonove, Lucie Pereira, Gaëtan Droc, Brigitte Courtois, Emmanuel Guiderdoni, Raphael Mercier
Introduction of clonal reproduction through seeds (apomixis) in crops has the potential to revolutionize agriculture by allowing self-propagation of any elite variety, in particular F1 hybrids. In the sexual model plant Arabidopsis thaliana synthetic clonal reproduction through seeds can be artificially implemented by (i) combining three mutations to turn meiosis into mitosis (MiMe) and (ii) crossing the obtained clonal gametes with a line expressing modified CENH3 and whose genome is eliminated in the zygote...
October 21, 2016: Cell Research
Saura R Silva, Yani C A Diaz, Helen Alves Penha, Daniel G Pinheiro, Camila C Fernandes, Vitor F O Miranda, Todd P Michael, Alessandro M Varani
Lentibulariaceae is the richest family of carnivorous plants spanning three genera including Pinguicula, Genlisea, and Utricularia. Utricularia is globally distributed, and, unlike Pinguicula and Genlisea, has both aquatic and terrestrial forms. In this study we present the analysis of the chloroplast (cp) genome of the terrestrial Utricularia reniformis. U. reniformis has a standard cp genome of 139,725bp, encoding a gene repertoire similar to essentially all photosynthetic organisms. However, an exclusive combination of losses and pseudogenization of the plastid NAD(P)H-dehydrogenase (ndh) gene complex were observed...
2016: PloS One
Essowè Palanga, Denis Filloux, Darren P Martin, Emmanuel Fernandez, Daniel Gargani, Romain Ferdinand, Jean Zabré, Zakaria Bouda, James Bouma Neya, Mahamadou Sawadogo, Oumar Traore, Michel Peterschmitt, Philippe Roumagnac
Cowpea, (Vigna unguiculata L. (Walp)) is an annual tropical grain legume. Often referred to as "poor man's meat", cowpea is one of the most important subsistence legumes cultivated in West Africa due to the high protein content of its seeds. However, African cowpea production can be seriously constrained by viral diseases that reduce yields. While twelve cowpea-infecting viruses have been reported from Africa, only three of these have so-far been reported from Burkina Faso. Here we use a virion-associated nucleic acids (VANA)-based metagenomics method to screen for the presence of cowpea viruses from plants collected from the three agro-climatic zones of Burkina Faso...
2016: PloS One
Garrett J McKinney, Ryan K Waples, Lisa W Seeb, James E Seeb
Whole genome duplications have occurred in the recent ancestors of many plants, fish, and amphibians, resulting in a pervasiveness of paralogous loci and the potential for both disomic and tetrasomic inheritance in the same genome. Paralogs can be difficult to reliably genotype and are often excluded from genotyping-by-sequencing (GBS) analyses; however, removal requires paralogs to be identified which is difficult without a reference genome. We present a method for identifying paralogs in natural populations by combining two properties of duplicated loci: 1) the expected frequency of heterozygotes exceeds that for singleton loci, and 2) within heterozygotes, observed read ratios for each allele in GBS data will deviate from the 1:1 expected for singleton (diploid) loci...
October 19, 2016: Molecular Ecology Resources
Sari Dewi Kurniasih, Tomohito Yamasaki, Fantao Kong, Sigeru Okada, Dwiyantari Widyaningrum, Takeshi Ohama
In this investigation, we succeeded to generate Chlamydomonas mutants that bear dramatically enhanced ability for transgene expression. To yield these mutants, we utilized DNA methyltransferase deficient strain. These mutants must be useful as a plant cell factory. Chlamydomonas reinhardtii (hereafter Chlamydomonas) is a green freshwater microalga. It is a promising cell factory for the production of recombinant proteins because it rapidly grows in simple salt-based media. However, expression of transgenes integrated into the nuclear genome of Chlamydomonas is very poor, probably because of severe transcriptional silencing irrespective of the genomic position...
October 19, 2016: Plant Molecular Biology
Martin Jopcik, Jana Moravcikova, Ildiko Matusikova, Miroslav Bauer, Miroslav Rajninec, Jana Libantova
Chitinase gene from the carnivorous plant, Drosera rotundifolia , was cloned and functionally characterised. Plant chitinases are believed to play an important role in the developmental and physiological processes and in responses to biotic and abiotic stress. In addition, there is growing evidence that carnivorous plants can use them to digest insect prey. In this study, a full-length genomic clone consisting of the 1665-bp chitinase gene (gDrChit) and adjacent promoter region of the 698 bp in length were isolated from Drosera rotundifolia L...
October 19, 2016: Planta
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"