Read by QxMD icon Read


Leilei Li, Yang Liu, Jiao Teng, Shibing Long, Qixun Guo, Meiyun Zhang, Yu Wu, Guanghua Yu, Qi Liu, Hangbing Lv, Ming Liu
Conductive bridge random access memory (CBRAM) has been extensively studied as a next-generation non-volatile memory. The conductive filament (CF) shows rich physical effects such as conductance quantization and magnetic effect. But so far, the study of filaments is not very sufficient. In this work, Co/HfO2/Pt CBRAM device with magnetic CF was designed and fabricated. By electrical manipulation with a partial-RESET method, we controlled the size of ferromagnetic metal filament. The resistance-temperature characteristics of the ON-state after various partial-RESET behaviors have been studied...
December 2017: Nanoscale Research Letters
Carlos L Pérez Díaz, Jonathan Muñoz, Tarendra Lakhankar, Reza Khanbilvardi, Peter Romanov
The quantity of liquid water in the snowpack defines its wetness. The temporal evolution of snow wetness's plays a significant role in wet-snow avalanche prediction, meltwater release, and water availability estimations and assessments within a river basin. However, it remains a difficult task and a demanding issue to measure the snowpack's liquid water content (LWC) and its temporal evolution with conventional in situ techniques. We propose an approach based on the use of time-domain reflectometry (TDR) and CS650 soil water content reflectometers to measure the snowpack's LWC and temperature profiles...
March 21, 2017: Sensors
Yongqian Li, Xiaojuan Li, Qi An, Lixin Zhang
A useful method for eliminating the detrimental effect of laser frequency instability on Brillouin signals by employing the self-heterodyne detection of Rayleigh and Brillouin scattering is presented. From the analysis of Brillouin scattering spectra from fibers with different lengths measured by heterodyne detection, the maximum usable pulse width immune to laser frequency instability is obtained to be about 4 µs in a self-heterodyne detection Brillouin optical time domain reflectometer (BOTDR) system using a broad-band laser with low frequency stability...
March 20, 2017: Sensors
Aysha Hamad Alneyadi, Iltaf Shah, Synan F AbuQamar, Syed Salman Ashraf
Enzymatic degradation of organic pollutants is a new and promising remediation approach. Peroxidases are one of the most commonly used classes of enzymes to degrade organic pollutants. However, it is generally assumed that all peroxidases behave similarly and produce similar degradation products. In this study, we conducted detailed studies of the degradation of a model aromatic pollutant, Sulforhodamine B dye (SRB dye), using two peroxidases-soybean peroxidase (SBP) and chloroperoxidase (CPO). Our results show that these two related enzymes had different optimum conditions (pH, temperature, H₂O₂ concentration, etc...
March 18, 2017: Biomolecules
Zebin Guo, Duanquan Lin, Juanjuan Guo, Yi Zhang, Baodong Zheng
This study investigated changes the in vitro antioxidant activity of Hippocampus polypeptides during enzymatic hydrolysis, including the effects of enzyme species, enzyme concentration, material-liquid ratio, hydrolysis time, pH, and temperature of the reaction system. Its in vivo anti-fatigue activity was also studied. Hippocampus peptide prepared by papain digestion exhibited the highest 1,1-diphenyl-2-picryl-hydrazyl free radical scavenging rate (71.89% ± 1.50%) and strong hydroxyl radical scavenging rate (75...
March 18, 2017: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
Ramanaskanda Braveenth, Hyeong Woo Bae, Quynh Pham Bao Nguyen, Haye Min Ko, Choong Hun Lee, Hyeong Jun Kim, Jang Hyuk Kwon, Kyu Yun Chai
Two new hole transporting materials, named HTM 1A and HTM 1B, were designed and synthesized in significant yields using the well-known Buchwald Hartwig and Suzuki cross- coupling reactions. Both materials showed higher decomposition temperatures (over 450 °C) at 5% weight reduction and HTM 1B exhibited a higher glass transition temperature of 180 °C. Red phosphorescence-based OLED devices were fabricated to analyze the device performances compared to Spiro-NPB and NPB as reference hole transporting materials...
March 14, 2017: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
Tisong Liang, Rongfa Guan, Haitao Shen, Qile Xia, Mingqi Liu
We aimed to optimize the formulation of C3G nanoliposomes using response surface methodology. Additionally, we evaluated the stability, particle change, and encapsulation efficiency (EE) of C3G nanoliposomes under different temperatures and storage durations, as well as in simulated gastrointestinal juice (SGF) and simulated intestinal fluid. The morphology of C3G nanoliposomes was observed by transmission electron microscope. The ability of C3G nanoliposomes to affect cancer cell morphology and inhibit cancer cell proliferation was studied with Caco-2 cells...
March 13, 2017: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
Ilknur Umay, Barış Fidan, Billur Barshan
Implantable sensor systems are effective tools for biomedical diagnosis, visualization and treatment of various health conditions, attracting the interest of researchers, as well as healthcare practitioners. These systems efficiently and conveniently provide essential data of the body part being diagnosed, such as gastrointestinal (temperature, pH, pressure) parameter values, blood glucose and pressure levels and electrocardiogram data. Such data are first transmitted from the implantable sensor units to an external receiver node or network and then to a central monitoring and control (computer) unit for analysis, diagnosis and/or treatment...
March 13, 2017: Sensors
Dan Shan, Mingqing Qian, Yang Ji, Xiaofan Jiang, Jun Xu, Kunji Chen
Nano-crystalline Si films with high conductivities are highly desired in order to develop the new generation of nano-devices. Here, we first demonstrate that the grain boundaries played an important role in the carrier transport process in un-doped nano-crystalline Si films as revealed by the temperature-dependent Hall measurements. The potential barrier height can be well estimated from the experimental results, which is in good agreement with the proposed model. Then, by introducing P and B doping, it is found that the scattering of grain boundaries can be significantly suppressed and the Hall mobility is monotonously decreased with the temperature both in P- and B-doped nano-crystalline Si films, which can be attributed to the trapping of P and B dopants in the grain boundary regions to reduce the barriers...
December 3, 2016: Nanomaterials
Yonghui Chen, Chen Xu, Yibo Zhou, Khan Maaz, Huijun Yao, Dan Mo, Shuangbao Lyu, Jinglai Duan, Jie Liu
Parallel arrays of Ni nanotubes with an external diameter of 150 nm, a wall thickness of 15 nm, and a length of 1.2 ± 0.3 µm were successfully fabricated in ion-track etched polycarbonate (PC) templates by electrochemical deposition. The morphology and crystal structure of the nanotubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Structural analyses indicate that Ni nanotubes have a polycrystalline structure with no preferred orientation...
December 1, 2016: Nanomaterials
Marcin Procek, Tadeusz Pustelny, Agnieszka Stolarczyk
This paper deals with experimental investigations of ZnO nanostructures, consisting of a mixture of nanoparticles and nanowires, obtained by the chemical (hydrothermal) method. The influences of both oxidizing (NO₂) and reducing gases (H₂, NH₃), as well as relative humidity (RH) on the physical and chemical properties of ZnO nanostructures were tested. Carrier gas effect on the structure interaction with gases was also tested; experiments were conducted in air and nitrogen (N₂) atmospheres. The effect of investigated gases on the resistance of the ZnO nanostructures was tested over a wide range of concentrations at room temperature (RT) and at 200 °C...
November 29, 2016: Nanomaterials
Hoik Lee, Duy-Nam Phan, Myungwoong Kim, Daewon Sohn, Seong-Geun Oh, Seong Hun Kim, Ick Soo Kim
Palladium (Pd) metal is well-known for hydrogen sensing material due to its high sensitivity and selectivity toward hydrogen, and is able to detect hydrogen at near room temperature. In this work, palladium-doped carbon nanofibers (Pd/CNFs) were successfully produced in a facile manner via electrospinning. Well-organized and uniformly distributed Pd was observed in microscopic images of the resultant nanofibers. Hydrogen causes an increment in the volume of Pd due to the ability of hydrogen atoms to occupy the octahedral interstitial positions within its face centered cubic lattice structure, resulting in the resistance transition of Pd/CNFs...
November 29, 2016: Nanomaterials
Delong Ma, Xiaomin Shi, Anming Hu
A strategy for growth of porous Ni₂GeO₄ nanosheets on conductive nickel (Ni) foam with robust adhesion as a high-performance electrode for Li-ion batteries is proposed and realized, through a facile two-step method. It involves the low temperature hydro-thermal synthesis of bimetallic (Ni, Ge) hydroxide nanosheets precursor on Ni foam substrates and subsequent thermal transformation to porous Ni₂GeO₄ nanosheets. The as-prepared Ni₂GeO₄ nanosheets possess many interparticle mesopores with a size range from 5 to 15 nm...
November 19, 2016: Nanomaterials
Baoyan Wu, Na Zhao
A novel targeting theranostic nanoprobe based on single-walled carbon nanotubes (SWCNTs)-natural biopolymer chitosan composites was developed for cancer cell targeting imaging and fluorescence imaging-guided photodynamic therapy. First, chitosan was respectively conjugated with a tumor-homing molecule folic acid, or a photosensitizing drug pyropheophorbide a using a water-soluble carbodiimide coupling chemistry. Chitosan was fluorescently labeled by fluorescein isothiocyanate via the covalently linkage of the isothiocyanate group with the amino group...
November 17, 2016: Nanomaterials
Ionela Cristina Nica, Miruna Silvia Stan, Anca Dinischiotu, Marcela Popa, Mariana Carmen Chifiriuc, Veronica Lazar, Gratiela G Pircalabioru, Eugenia Bezirtzoglou, Ovidiu G Iordache, Elena Varzaru, Iuliana Dumitrescu, Marcel Feder, Florin Vasiliu, Ionel Mercioniu, Lucian Diamandescu
The development of innovative technologies to modify natural textiles holds an important impact for medical applications, including the prevention of contamination with microorganisms, particularly in the hospital environment. In our study, Fe and N co-doped TiO₂ nanoparticles have been obtained via the hydrothermal route, at moderate temperature, followed by short thermal annealing at 400 °C. These particles were used to impregnate polyester (PES) materials which have been evaluated for their morphology, photocatalytic performance, antimicrobial activity against bacterial reference strains, and in vitro biocompatibility on human skin fibroblasts...
November 15, 2016: Nanomaterials
Shilin Huang, Guang Ran, Penghui Lei, Shenghua Wu, Nanjun Chen, Ning Li
The self-assembly nanocone structures on the surface of polycrystalline tungsten were created by He⁺ ion irradiation and then annealing, and the resulting topography and morphology were characterized using atomic force microscopy and scanning electron microscopy. The cross-sectional samples of the self-assembly nanocones were prepared using an in situ-focused ion beam and then observed using transmission electron microscopy. The self-assembly nanocones were induced by the combined effect of He⁺ ion irradiation, the annealing process and the chromium impurity...
November 12, 2016: Nanomaterials
Dongwei Hou, Guoping Zhang, Rohit Raj Pant, Zhongxin Wei, Shuilong Shen
Clay-based nanostructured multilayers, such as clay-polymer multilayers and clay-oxide multilayers, have attracted growing attention owing to their remarkable mechanical properties and promising application in various fields. In this paper, synthesis of a new kind of nanostructured clay-oxide multilayers by layer-by-layer self-assembly was explored. Nano-mechanical characterization of 18 clay-based multilayer samples, prepared under as-deposited (i.e., air-dried) and annealing conditions at 400 °C/600 °C with different precursor cations and multilayer structure, were carried out using nanoindentation testing, atomic force microscopy (AFM), and X-ray diffraction (XRD)...
November 8, 2016: Nanomaterials
Huijie Li, Guijuan Zhao, Lianshan Wang, Zhen Chen, Shaoyan Yang
Growth of semiconductor nanowires on cheap metal substrates could pave the way to the large-scale manufacture of low-cost nanowire-based devices. In this work, we demonstrated that high density InN nanowires can be directly grown on brass substrates by metal-organic chemical vapor deposition. It was found that Zn from the brass substrates is the key factor in the formation of nanowires by restricting the lateral growth of InN. The nanowire morphology is highly dependent on the growth temperature. While at a lower growth temperature, the nanowires and the In droplets have large diameters...
October 29, 2016: Nanomaterials
Juan Carlos Calderón, Miguel Rios Ráfales, María Jesús Nieto-Monge, Juan Ignacio Pardo, Rafael Moliner, María Jesús Lázaro
In this work, palladium-nickel nanoparticles supported on carbon nanofibers were synthesized, with metal contents close to 25 wt % and Pd:Ni atomic ratios near to 1:2. These catalysts were previously studied in order to determine their activity toward the oxygen reduction reaction. Before the deposition of metals, the carbon nanofibers were chemically treated in order to generate oxygen and nitrogen groups on their surface. Transmission electron microscopy analysis (TEM) images revealed particle diameters between 3 and 4 nm, overcoming the sizes observed for the nanoparticles supported on carbon black (catalyst Pd-Ni CB 1:2)...
October 18, 2016: Nanomaterials
Satoshi Ota, Ryoichi Kitaguchi, Ryoji Takeda, Tsutomu Yamada, Yasushi Takemura
The dependence of magnetic relaxation on particle parameters, such as the size and anisotropy, has been conventionally discussed. In addition, the influences of external conditions, such as the intensity and frequency of the applied field, the surrounding viscosity, and the temperature on the magnetic relaxation have been researched. According to one of the basic theories regarding magnetic relaxation, the faster type of relaxation dominates the process. However, in this study, we reveal that Brownian and Néel relaxations coexist and that Brownian relaxation can occur after Néel relaxation despite having a longer relaxation time...
September 10, 2016: Nanomaterials
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"