Read by QxMD icon Read


Arne Schwelm, Cédric Berney, Christina Dixelius, David Bassc, Sigrid Neuhauser
Clubroot disease caused by Plasmodiophora brassicae is one of the most important diseases of cultivated brassicas. P. brassicae occurs in pathotypes which differ in the aggressiveness towards their Brassica host plants. To date no DNA based method to distinguish these pathotypes has been described. In 2011 polymorphism within the 28S rDNA of P. brassicae was reported which potentially could allow to distinguish pathotypes without the need of time-consuming bioassays. However, isolates of P. brassicae from around the world analysed in this study do not show polymorphism in their LSU rDNA sequences...
September 9, 2016: Protist
Lixia Li, Yujie Luo, Biyun Chen, Kun Xu, Fugui Zhang, Hao Li, Qian Huang, Xin Xiao, Tianyao Zhang, Jihong Hu, Feng Li, Xiaoming Wu
Rapeseed (Brassica napus L.) is one of the most important oil crops in the world. However, the yield and quality of rapeseed were largely decreased by clubroot (Plasmodiophora brassicae Woronin). Therefore, it is of great importance for screening more resistant germplasms or genes and improving the resistance to P. brassicae in rapeseed breeding. In this study, a massive resistant identification for a natural global population was conducted in two environments with race/pathotype 4 of P. brassicae which was the most predominant in China, and a wide range of phenotypic variation was found in the population...
2016: Frontiers in Plant Science
Hun Kim, Eun Ju Jo, Yong Ho Choi, Kyoung Soo Jang, Gyung Ja Choi
Clubroot disease caused by Plasmodiophora brassicae is one of the most serious diseases in Brassica crops worldwide. In this study, the pathotypes of 12 Korean P. brassicae field isolates were determined using various Chinese cabbage including 22 commercial cultivars from Korea, China, and Japan, and 15 inbred lines. All P. brassicae isolates exhibited the typical clubroot disease on non-clubroot resistant cultivar, indicating that the isolates were highly pathogenic. According to the reactions on the Williams' hosts, the 12 field isolates were initially classified into five races...
October 2016: Plant Pathology Journal
Tao Chen, Kai Bi, Zhangchao He, Zhixiao Gao, Ying Zhao, Yanping Fu, Jiasen Cheng, Jiatao Xie, Daohong Jiang
Botrytis-induced kinase1 (BIK1), a receptor-like cytoplasmic kinase, plays an important role in resistance against pathogens and insects in Arabidopsis thaliana. However, it remains unknown whether BIK1 functions against Plasmodiophora brassicae, an obligate biotrophic protist that attacks cruciferous plants and induces gall formation on roots. Here, we investigated the potential roles of receptors FLS2, BAK1, and BIK1 in the infection of P. brassicae cruciferous plants. Wild-type plants, fls2, and bak1 mutants showed typical symptom on roots, and the galls were filled with large quantities of resting spores, while bik1 mutant plants exhibited strong resistance to P...
2016: Frontiers in Physiology
Muhammad Jakir Hasan, Habibur Rahman
Clubroot disease, caused by Plasmodiophora brassicae, is a threat to the production of Brassica crops including oilseed B. napus. In Canada, several pathotypes of this pathogen, such as pathotypes 2, 3, 5, 6, and 8, were identified, and resistance to these pathotypes was found in a rutabaga (B. napus var. napobrassica) genotype. In this paper, we report the genetic basis and molecular mapping of this resistance by use of F2, backcross (BC1), and doubled haploid (DH) populations generated from crossing of this rutabaga line to a susceptible spring B...
October 2016: Genome Génome / Conseil National de Recherches Canada
S W Chen, T Liu, Y Gao, C Zhang, S D Peng, M B Bai, S J Li, L Xu, X Y Zhou, L B Lin
Clubroot significantly affects plants of the Brassicaceae family and is one of the main diseases causing serious losses in B. napus yield. Few studies have investigated the clubroot-resistance mechanism in B. napus. Identification of clubroot-resistant genes may be used in clubroot-resistant breeding, as well as to elucidate the molecular mechanism behind B. napus clubroot-resistance. We used three B. napus transcriptome samples to construct a transcriptome sequencing library by using Illumina HiSeq™ 2000 sequencing and bioinformatic analysis...
2016: Genetics and Molecular Research: GMR
Tao Song, Mingguang Chu, Rachid Lahlali, Fengqun Yu, Gary Peng
Clubroot, caused by the plasmodiophorid pathogen Plasmodiophora brassicae, is one of the most serious diseases on Brassica crops worldwide and a major threat to canola production in western Canada. Host resistance is the key strategy for clubroot management on canola. Several clubroot resistance (CR) genes have been identified, but the mechanisms associated with these CR genes are poorly understood. In the current study, a label-free shotgun proteomic approach was used to profile and compare the proteomes of Brassica rapa carrying and not carrying the CR gene Rcr1 in response to P...
2016: Frontiers in Plant Science
Ranjith Kumar Manoharan, Ashokraj Shanmugam, Indeok Hwang, Jong-In Park, Ill-Sup Nou
Brassica oleracea var. capitata (cabbage) is an important vegetable crop in Asian countries such as Korea, China, and Japan. Cabbage production is severely affected by clubroot disease caused by the soil-borne plant pathogen Plasmodiophora brassicae. During clubroot development, methyl salicylate (MeSA) is biosynthesized from salicylic acid (SA) by methyltransferase. In addition, methyl salicylate esterase (MES) plays a major role in the conversion of MeSA back into free SA. The interrelationship between MES and methytransferases during clubroot development has not been fully explored...
June 2016: Genome Génome / Conseil National de Recherches Canada
Ann-Charlotte Wallenhammar, Albin Gunnarson, Fredrik Hansson, Anders Jonsson
Outbreaks of clubroot disease caused by the soil-borne obligate parasite Plasmodiophora brassicae are common in oilseed rape (OSR) in Sweden. A DNA-based soil testing service that identifies fields where P. brassicae poses a significant risk of clubroot infection is now commercially available. It was applied here in field surveys to monitor the prevalence of P. brassicae DNA in field soils intended for winter OSR production and winter OSR field experiments. In 2013 in Scania, prior to planting, P. brassicae DNA was detected in 60% of 45 fields on 10 of 18 farms...
2016: Plants (Basel, Switzerland)
Fengqun Yu, Xingguo Zhang, Zhen Huang, Mingguang Chu, Tao Song, Kevin C Falk, Abhinandan Deora, Qilin Chen, Yan Zhang, Linda McGregor, Bruce D Gossen, Mary Ruth McDonald, Gary Peng
Clubroot, caused by Plasmodiophora brassicae, is an important disease on Brassica species worldwide. A clubroot resistance gene, Rcr1, with efficacy against pathotype 3 of P. brassicae, was previously mapped to chromosome A03 of B. rapa in pak choy cultivar "Flower Nabana". In the current study, resistance to pathotypes 2, 5 and 6 was shown to be associated with Rcr1 region on chromosome A03. Bulked segregant RNA sequencing was performed and short read sequences were assembled into 10 chromosomes of the B. rapa reference genome v1...
2016: PloS One
Stephen A Rolfe, Stephen E Strelkov, Matthew G Links, Wayne E Clarke, Stephen J Robinson, Mohammad Djavaheri, Robert Malinowski, Parham Haddadi, Sateesh Kagale, Isobel A P Parkin, Ali Taheri, M Hossein Borhan
BACKGROUND: The protist Plasmodiophora brassicae is a soil-borne pathogen of cruciferous species and the causal agent of clubroot disease of Brassicas including agriculturally important crops such as canola/rapeseed (Brassica napus). P. brassicae has remained an enigmatic plant pathogen and is a rare example of an obligate biotroph that resides entirely inside the host plant cell. The pathogen is the cause of severe yield losses and can render infested fields unsuitable for Brassica crop growth due to the persistence of resting spores in the soil for up to 20 years...
2016: BMC Genomics
Kazutaka Kawamura, Takahiro Kawanabe, Motoki Shimizu, Keiichi Okazaki, Makoto Kaji, Elizabeth S Dennis, Kenji Osabe, Ryo Fujimoto
Chinese cabbage (Brassica rapa L. var. pekinensis) is an important vegetable in Asia, and most Japanese commercial cultivars of Chinese cabbage use an F1 hybrid seed production system. Self-incompatibility is successfully used for the production of F1 hybrid seeds in B. rapa vegetables to avoid contamination by non-hybrid seeds, and the strength of self-incompatibility is important for harvesting a highly pure F1 seeds. Prediction of agronomically important traits such as disease resistance based on DNA markers is useful...
March 2016: Data in Brief
Jonghoon Lee, Nur Kholilatul Izzah, Beom-Soon Choi, Ho Jun Joh, Sang-Choon Lee, Sampath Perumal, Joodeok Seo, Kyounggu Ahn, Eun Ju Jo, Gyung Ja Choi, Ill-Sup Nou, Yeisoo Yu, Tae-Jin Yang
Clubroot is a devastating disease caused by Plasmodiophora brassicae and results in severe losses of yield and quality in Brassica crops. Many clubroot resistance genes and markers are available in Brassica rapa but less is known in Brassica oleracea. Here, we applied the genotyping-by-sequencing (GBS) technique to construct a high-resolution genetic map and identify clubroot resistance (CR) genes. A total of 43,821 SNPs were identified using GBS data for two parental lines, one resistant and one susceptible lines to clubroot, and 18,187 of them showed >5× coverage in the GBS data...
February 2016: DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes
Séverine Lemarié, Alexandre Robert-Seilaniantz, Christine Lariagon, Jocelyne Lemoine, Nathalie Marnet, Mélanie Jubault, Maria J Manzanares-Dauleux, Antoine Gravot
The role of salicylic acid (SA) and jasmonic acid (JA) signaling in resistance to root pathogens has been poorly documented. We assessed the contribution of SA and JA to basal and partial resistance of Arabidopsis to the biotrophic clubroot agent Plasmodiophora brassicae. SA and JA levels as well as the expression of the SA-responsive genes PR2 and PR5 and the JA-responsive genes ARGAH2 and THI2.1 were monitored in infected roots of the accessions Col-0 (susceptible) and Bur-0 (partially resistant). SA signaling was activated in Bur-0 but not in Col-0...
November 2015: Plant & Cell Physiology
Séverine Lemarié, Alexandre Robert-Seilaniantz, Christine Lariagon, Jocelyne Lemoine, Nathalie Marnet, Anne Levrel, Mélanie Jubault, Maria J Manzanares-Dauleux, Antoine Gravot
Camalexin has been reported to play defensive functions against several pathogens in Arabidopsis. In this study, we investigated the possible role of camalexin accumulation in two Arabidopsis genotypes with different levels of basal resistance to the compatible eH strain of the clubroot agent Plasmodiophora brassicae. Camalexin biosynthesis was induced in infected roots of both Col-0 (susceptible) and Bur-0 (partially resistant) accessions during the secondary phase of infection. However, the level of accumulation was four-to-seven times higher in Bur-0 than Col-0...
2015: Frontiers in Plant Science
Arne Schwelm, Johan Fogelqvist, Andrea Knaust, Sabine Jülke, Tua Lilja, German Bonilla-Rosso, Magnus Karlsson, Andrej Shevchenko, Vignesh Dhandapani, Su Ryun Choi, Hong Gi Kim, Ju Young Park, Yong Pyo Lim, Jutta Ludwig-Müller, Christina Dixelius
Plasmodiophora brassicae causes clubroot, a major disease of Brassica oil and vegetable crops worldwide. P. brassicae is a Plasmodiophorid, obligate biotrophic protist in the eukaryotic kingdom of Rhizaria. Here we present the 25.5 Mb genome draft of P. brassicae, developmental stage-specific transcriptomes and a transcriptome of Spongospora subterranea, the Plasmodiophorid causing powdery scab on potato. Like other biotrophic pathogens both Plasmodiophorids are reduced in metabolic pathways. Phytohormones contribute to the gall phenotypes of infected roots...
2015: Scientific Reports
Shengye Guo, Xingyu Li, Pengfei He, Honhing Ho, Yixin Wu, Yueqiu He
Bacillus subtilis XF-1 is a gram-positive, plant-associated bacterium that stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. In particular, it is especially highly efficient at controlling the clubroot disease of cruciferous crops. Its 4,061,186-bp genome contains an estimated 3853 protein-coding sequences and the 1155 genes of XF-1 are present in most genome-sequenced Bacillus strains: 3757 genes in B. subtilis 168, and 1164 in B. amyloliquefaciens FZB42. Analysis using the Cluster of Orthologous Groups database of proteins shows that 60 genes control bacterial mobility, 221 genes are related to cell wall and membrane biosynthesis, and more than 112 are genes associated with secondary metabolites...
June 2015: Journal of Industrial Microbiology & Biotechnology
Jutta Ludwig-Müller
The obligate biotrophic protist Plasmodiophora brassicae causes worldwide devastating losses on Brassica crops. Among these are oilseed rape, vegetable brassicas, and turnips. However, the fact that Arabidopsis thaliana is a good host for P. brassicae, has boosted research on the molecular interaction using the resources available for this model plant. Due to the uncontrolled growth of infected host root tissues the disease has been coined "clubroot." Consequently, during the last years, alterations in host hormone metabolisms have been described...
2014: Plant Signaling & Behavior
H Zhang, J Feng, V P Manolii, S E Strelkov, S-F Hwang
Clubroot caused by Plasmodiophora brassicae is an important disease of crucifers worldwide. Isolates of the pathogen can be classified into pathotypes according to their pathogenicity on differential hosts. In this study, the presence or absence of all database-available nonhousekeeping P. brassicae genes (118 in total) were assessed by polymerase chain reaction (PCR) analysis in isolates belonging to five P. brassicae pathotypes (2, 3, 5, 6, and 8 according to Williams' differential set). One gene, designated Cr811, was present exclusively in the isolate of pathotype 5...
June 2015: Phytopathology
Mingguang Chu, Tao Song, Kevin C Falk, Xingguo Zhang, Xunjia Liu, Adrian Chang, Rachid Lahlali, Linda McGregor, Bruce D Gossen, Gary Peng, Fengqun Yu
BACKGROUND: The protist Plasmodiophora brassicae is a biotrophic soil-borne pathogen that causes clubroot on Brassica crops worldwide. Clubroot disease is a serious threat to the 8 M ha of canola (Brassica napus) grown annually in western Canada. While host resistance is the key to clubroot management, sources of resistance are limited. RESULTS: To identify new sources of clubroot resistance (CR), we fine mapped a CR gene (Rcr1) from B. rapa ssp. chinensis to the region between 24...
2014: BMC Genomics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"