Read by QxMD icon Read

plant insect interactions

Luis Abdala-Roberts, Johnattan Hernández-Cumplido, Luis Chel-Guerrero, David Betancur-Ancona, Betty Benrey, Xoaquín Moreira
PREMISE OF STUDY: Although there is increasing recognition of the effects of plant intraspecific diversity on consumers, the mechanisms by which such effects cascade-up to higher trophic levels remain elusive. METHODS: We evaluated the effects of plant (lima bean, Phaseolus lunatus) intraspecific diversity on a suite of insect herbivores (leaf-chewers, aphids, and seed-eating beetles) and their third trophic-level associates (parasitoids and aphid-tending ants)...
October 18, 2016: American Journal of Botany
William C Wetzel, Heather M Kharouba, Moria Robinson, Marcel Holyoak, Richard Karban
The performance and population dynamics of insect herbivores depend on the nutritive and defensive traits of their host plants(1). The literature on plant-herbivore interactions focuses on plant trait means(2,3,4), but recent studies showing the importance of plant genetic diversity for herbivores suggest that plant trait variance may be equally important(5,6). The consequences of plant trait variance for herbivore performance, however, have been largely overlooked. Here we report an extensive assessment of the effects of within-population plant trait variance on herbivore performance using 457 performance datasets from 53 species of insect herbivores...
October 12, 2016: Nature
Pankaj Trivedi, Chanda Trivedi, Jasmine Grinyer, Ian C Anderson, Brajesh K Singh
Plant health and productivity is strongly influenced by their intimate interaction with deleterious and beneficial organisms, including microbes, and insects. Of the various plant diseases, insect-vectored diseases are of particular interest, including those caused by obligate parasites affecting plant phloem such as Candidatus (Ca.) Phytoplasma species and several species of Ca. Liberibacter. Recent studies on plant-microbe and plant-insect interactions of these pathogens have demonstrated that plant-microbe-insect interactions have far reaching consequences for the functioning and evolution of the organisms involved...
2016: Frontiers in Plant Science
Lional Rajappa-Titu, Takuma Suematsu, Paola Munoz-Tello, Marius Long, Özlem Demir, Kevin J Cheng, Jason R Stagno, Hartmut Luecke, Rommie E Amaro, Inna Aphasizheva, Ruslan Aphasizhev, Stéphane Thore
Terminal uridyltransferases (TUTases) execute 3' RNA uridylation across protists, fungi, metazoan and plant species. Uridylation plays a particularly prominent role in RNA processing pathways of kinetoplastid protists typified by the causative agent of African sleeping sickness, Trypanosoma brucei In mitochondria of this pathogen, most mRNAs are internally modified by U-insertion/deletion editing while guide RNAs and rRNAs are U-tailed. The founding member of TUTase family, RNA editing TUTase 1 (RET1), functions as a subunit of the 3' processome in uridylation of gRNA precursors and mature guide RNAs...
October 15, 2016: Nucleic Acids Research
Carrie A Deans, Spencer T Behmer, Justin Fiene, Gregory A Sword
Plant soluble protein and digestible carbohydrate content significantly affect insect herbivore fitness, but studies reporting plant protein and carbohydrate content are rare. Instead, the elements nitrogen and carbon often are used as surrogates for plant protein and digestible carbohydrate content, respectively. However, this is problematic for two reasons. First, carbon is found in all organic molecules, which precludes strong correlations with ecologically important dietary macronutrients (e.g., digestible carbohydrates, the primary energy source for most insect herbivores)...
October 13, 2016: Journal of Chemical Ecology
João Lúcio Azevedo, Welington Luiz Araújo, Paulo Teixeira Lacava
The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC) and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.)] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms...
October 10, 2016: Genetics and Molecular Biology
Didier Bouchon, Martin Zimmer, Jessica Dittmer
Bacterial symbionts represent essential drivers of arthropod ecology and evolution, influencing host traits such as nutrition, reproduction, immunity, and speciation. However, the majority of work on arthropod microbiota has been conducted in insects and more studies in non-model species across different ecological niches will be needed to complete our understanding of host-microbiota interactions. In this review, we present terrestrial isopod crustaceans as an emerging model organism to investigate symbiotic associations with potential relevance to ecosystem functioning...
2016: Frontiers in Microbiology
Jessica Rk Forrest
Insect phenologies are changing in response to climate warming. Shifts toward earlier seasonal activity are widespread; however, responses of insect phenology to warming are often more complex. Many species have prolonged their activity periods; others have shown delays. Furthermore, because of interspecific differences in temperature sensitivity, warming can increase or decrease synchronization between insects and their food plants and natural enemies. Here, I review recent findings in three areas-shifts in phenology, changes in voltinism, and altered species interactions-and highlight counterintuitive responses to warming caused by the particularities of insect life cycles...
October 2016: Current Opinion in Insect Science
Stéphane Blanc, Yannis Michalakis
The effect of environmental factors on the efficiency of plant virus transmission is extremely difficult to predict, because they obviously impact concomitantly multiple steps of the complex three-way plant-virus-vector interaction. This review summarizes the diversity of the relationship between plants, viruses and insect vectors, and highlights the numerous phases of this process that can be altered by the virus in ways that can potentially enhance its transmission success. Many of the reported cases are often considered to be possible viral manipulations acting through modifications of the physiology of the host plant, indirectly reaching to the insect vector...
August 2016: Current Opinion in Insect Science
Anna-Sara Liman, Peter Dalin, Christer Björkman
Plant traits can mediate the strength of interactions between omnivorous predators and their prey through density effects and changes in the omnivores' trophic behavior. In this study, we explored the established assumption that enhanced nutrient status in host plants strengthens the buffering effect of plant feeding for omnivorous predators, i.e., prevents rapid negative population growth during prey density decline and thereby increases and stabilizes omnivore population density. We analyzed 13 years of field data on population densities of a heteropteran omnivore on Salix cinerea stands, arranged along a measured leaf nitrogen gradient and found a 195 % increase in omnivore population density and a 63 % decrease in population variability with an increase in leaf nitrogen status from 26 to 40 mgN × g(-1)...
October 7, 2016: Oecologia
Sean C Hackett, Michael B Bonsall
The evolution of resistance to pesticides by insect pests is a significant challenge for sustainable agriculture. For transgenic crops expressing Bacillus thuringiensis (Bt), crystalline (Cry) toxins resistance evolution may be delayed by the high-dose/refuge strategy in which a non-toxic refuge is planted to promote the survival of susceptible insects. The high-dose/refuge strategy may interact with fitness costs associated with resistance alleles to further delay resistance. However, while a diverse range of fitness costs are reported in the field, they are typically represented as a fixed reduction in survival or viability which is insensitive to ecological conditions such as competition...
October 2016: Journal of Applied Ecology
Swayamjit Ray, Saumik Basu, Loren J Rivera-Vega, Flor E Acevedo, Joe Louis, Gary W Felton, Dawn S Luthe
Plant defenses to insect herbivores have been studied in response to several insect behaviors on plants such as feeding, crawling, and oviposition. However, we have only scratched the surface about how insect feces induce plant defenses. In this study, we measured frass-induced plant defenses in maize, rice, cabbage, and tomato by chewing herbivores such as European corn borer (ECB), fall armyworm (FAW), cabbage looper (CL), and tomato fruit worm (TFW). We observed that caterpillar frass induced plant defenses are specific to each host-herbivore system, and they may induce herbivore or pathogen defense responses in the host plant depending on the composition of the frass deposited on the plant, the plant organ where it is deposited, and the species of insect...
October 4, 2016: Journal of Chemical Ecology
Ana L Salgado, Tomasz Suchan, Loïc Pellissier, Sergio Rasmann, Anne-Lyse Ducrest, Nadir Alvarez
Elevation gradients impose large differences in abiotic and biotic conditions over short distances, in turn, likely driving differences in gene expression more than would genetic variation per se, as natural selection and drift are less likely to fix alleles at such a narrow spatial scale. As elevation increases, the pressure exerted on plants by herbivores and on arthropod herbivores by predators decreases, and organisms spanning the elevation gradient are thus expected to show lower levels of defence at high elevation...
September 2016: Royal Society Open Science
Haiyan Li, Ann C Smigocki
Sugar beet root maggot (SBRM, Tetanops myopaeformis von Röder) is a major but poorly understood insect pest of sugar beet (Beta vulgaris L.). The molecular mechanisms underlying plant defense responses are well documented, however, little information is available about complementary mechanisms for insect adaptive responses to overcome host resistance. To date, no studies have been published on SBRM gene expression profiling. Suppressive subtractive hybridization (SSH) generated more than 300 SBRM ESTs differentially expressed in the interaction of the pest with a moderately resistant (F1016) and a susceptible (F1010) sugar beet line...
October 3, 2016: Insect Science
Joshua R Widhalm, David Rhodes
The 1,4-naphthoquinones (1,4-NQs) are a diverse group of natural products found in every kingdom of life. Plants, including many horticultural species, collectively synthesize hundreds of specialized 1,4-NQs with ecological roles in plant-plant (allelopathy), plant-insect and plant-microbe interactions. Numerous horticultural plants producing 1,4-NQs have also served as sources of traditional medicines for hundreds of years. As a result, horticultural species have been at the forefront of many basic studies conducted to understand the metabolism and function of specialized plant 1,4-NQs...
2016: Horticulture Research
Wan Fatma Zuharah, Maniam Thiagaletchumi, Nik Fadzly
The interaction between plants and insects is dynamic, and may favour either the plant or the insect. Plant chemicals are deeply implicated in this relationship and influence insect behaviour. Here, we investigated the oviposition behaviour response of Culex quinquefasciatus mosquitoes based on the colour cues produced by Ipomoea cairica leaves extract. In this study, two sets of oviposition choice experiments were conducted: (1) single solution in a cage; and (2) multiple concentration solutions in a cage...
August 2016: Tropical Life Sciences Research
Antonino Malacrinò, Leonardo Schena, Orlando Campolo, Francesca Laudani, Saveria Mosca, Giulia Giunti, Cinzia Patricia Strano, Vincenzo Palmeri
The occurrence of interaction between insects and fungi is interesting from an ecological point of view, particularly when these interactions involve insect pests and plant pathogens within an agroecosystem. In this study, we aimed to perform an accurate analysis on the fungal microbiota associated to Bactrocera oleae (Rossi) through a metabarcoding approach based on 454 pyrosequencing. From this analysis, we retrieved 43,549 reads that clustered into 128 operational taxonomic units (OTUs), of which 29 resulted in the "core" associate fungi of B...
September 29, 2016: Microbial Ecology
Safaa Dalla, Susanne Dobler
Herbivorous insects and their adaptations against plant toxins provide striking opportunities to investigate the genetic basis of traits involved in coevolutionary interactions. Target site insensitivity to cardenolides has evolved convergently across six orders of insects, involving identical substitutions in the Na,K-ATPase gene and repeated convergent gene duplications. The large milkweed bug, Oncopeltus fasciatus, has three copies of the Na,K-ATPase α-subunit gene that bear differing numbers of amino acid substitutions in the binding pocket for cardenolides...
September 29, 2016: Evolution; International Journal of Organic Evolution
Andika Gunadi, Raman Bansal, John J Finer, Andy Michel
BACKGROUND: Studies on plant-insect interactions of the soybean aphid, Aphis glycines (Matsumura), can be influenced by environmental fluctuations, status of the host plant and variability in microbial populations. Maintenance of aphids on in vitro-grown plants minimizes environmental fluctuations, provides uniform host materials and permits the selective elimination of aphid-associated microbes for more standardized controls in aphid research. RESULTS: Aphids were reared on sterile, in vitro-grown soybean seedlings, germinated on plant tissue culture media amended with a mixture of antimicrobials...
September 28, 2016: Pest Management Science
Y García, M C Castellanos, J G Pausas
Fire has a key role in the ecology and evolution of many ecosystems, yet its effects on plant-insect interactions are poorly understood. Because interacting species are likely to respond to fire differently, disruptions of the interactions are expected. We hypothesized that plants that regenerate after fire can benefit through the disruption of their antagonistic interactions. We expected stronger effects on interactions with specialist predators than with generalists. We studied two interactions between two Mediterranean plants (Ulex parviflorus, Asphodelus ramosus) and their specialist seed predators after large wildfires...
December 2016: Oecologia
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"