keyword
MENU ▼
Read by QxMD icon Read
search

Drosophila optogenetics

keyword
https://www.readbyqxmd.com/read/28728024/origins-of-cell-type-specific-olfactory-processing-in-the-drosophila-mushroom-body-circuit
#1
Kengo Inada, Yoshiko Tsuchimoto, Hokto Kazama
How cell-type-specific physiological properties shape neuronal functions in a circuit remains poorly understood. We addressed this issue in the Drosophila mushroom body (MB), a higher olfactory circuit, where neurons belonging to distinct glomeruli in the antennal lobe feed excitation to three types of intrinsic neurons, α/β, α'/β', and γ Kenyon cells (KCs). Two-photon optogenetics and intracellular recording revealed that whereas glomerular inputs add similarly in all KCs, spikes were generated most readily in α'/β' KCs...
July 19, 2017: Neuron
https://www.readbyqxmd.com/read/28719603/the-%C3%A2-100-lab-a-3d-printable-open-source-platform-for-fluorescence-microscopy-optogenetics-and-accurate-temperature-control-during-behaviour-of-zebrafish-drosophila-and-caenorhabditis-elegans
#2
Andre Maia Chagas, Lucia L Prieto-Godino, Aristides B Arrenberg, Tom Baden
Small, genetically tractable species such as larval zebrafish, Drosophila, or Caenorhabditis elegans have become key model organisms in modern neuroscience. In addition to their low maintenance costs and easy sharing of strains across labs, one key appeal is the possibility to monitor single or groups of animals in a behavioural arena while controlling the activity of select neurons using optogenetic or thermogenetic tools. However, the purchase of a commercial solution for these types of experiments, including an appropriate camera system as well as a controlled behavioural arena, can be costly...
July 2017: PLoS Biology
https://www.readbyqxmd.com/read/28691901/decoding-temporal-interpretation-of-the-morphogen-bicoid-in-the-early-drosophila-embryo
#3
Anqi Huang, Christopher Amourda, Shaobo Zhang, Nicholas S Tolwinski, Timothy E Saunders
Morphogen gradients provide essential spatial information during development. Not only the local concentration but also duration of morphogen exposure is critical for correct cell fate decisions. Yet, how and when cells temporally integrate signals from a morphogen remains unclear. Here, we use optogenetic manipulation to switch off Bicoid-dependent transcription in the early Drosophila embryo with high temporal resolution, allowing time-specific and reversible manipulation of morphogen signalling. We find that Bicoid transcriptional activity is dispensable for embryonic viability in the first hour after fertilization, but persistently required throughout the rest of the blastoderm stage...
July 10, 2017: ELife
https://www.readbyqxmd.com/read/28658318/weclmon-a-simple-and-robust-camera-based-system-to-monitor-drosophila-eclosion-under-optogenetic-manipulation-and-natural-conditions
#4
Franziska Ruf, Martin Fraunholz, Konrad Öchsner, Johann Kaderschabek, Christian Wegener
Eclosion in flies and other insects is a circadian-gated behaviour under control of a central and a peripheral clock. It is not influenced by the motivational state of an animal, and thus presents an ideal paradigm to study the relation and signalling pathways between central and peripheral clocks, and downstream peptidergic regulatory systems. Little is known, however, about eclosion rhythmicity under natural conditions, and research into this direction is hampered by the physically closed design of current eclosion monitoring systems...
2017: PloS One
https://www.readbyqxmd.com/read/28652571/discovery-of-long-range-inhibitory-signaling-to-ensure-single-axon-formation
#5
Tetsuya Takano, Mengya Wu, Shinichi Nakamuta, Honda Naoki, Naruki Ishizawa, Takashi Namba, Takashi Watanabe, Chundi Xu, Tomonari Hamaguchi, Yoshimitsu Yura, Mutsuki Amano, Klaus M Hahn, Kozo Kaibuchi
A long-standing question in neurodevelopment is how neurons develop a single axon and multiple dendrites from common immature neurites. Long-range inhibitory signaling from the growing axon is hypothesized to prevent outgrowth of other immature neurites and to differentiate them into dendrites, but the existence and nature of this inhibitory signaling remains unknown. Here, we demonstrate that axonal growth triggered by neurotrophin-3 remotely inhibits neurite outgrowth through long-range Ca(2+) waves, which are delivered from the growing axon to the cell body...
June 26, 2017: Nature Communications
https://www.readbyqxmd.com/read/28632130/the-laminar-organization-of-the-drosophila-ellipsoid-body-is-semaphorin-dependent-and-prevents-the-formation-of-ectopic-synaptic-connections
#6
Xiaojun Xie, Masashi Tabuchi, Matthew P Brown, Sarah P Mitchell, Mark N Wu, Alex L Kolodkin
The ellipsoid body (EB) in the Drosophila brain is a central complex (CX) substructure that harbors circumferentially laminated ring (R) neuron axons and mediates multifaceted sensory integration and motor coordination functions. However, what regulates R axon lamination and how lamination affects R neuron function remain unknown. We show here that the EB is sequentially innervated by small-field and large-field neurons and that early developing EB neurons play an important regulatory role in EB laminae formation...
June 20, 2017: ELife
https://www.readbyqxmd.com/read/28630111/investigation-of-seizure-susceptibility-in-a-drosophila-model-of-human-epilepsy-with-optogenetic-stimulation
#7
Arunesh Saras, Veronica V Wu, Harlan J Brawer, Mark A Tanouye
We examined seizure-susceptibility in a Drosophila model of human epilepsy using optogenetic stimulation of ReaChR opsin. Photostimulation of the seizure-sensitive mutant para(bss1) causes behavioral paralysis that resembles paralysis caused by mechanical stimulation, in many aspects. Electrophysiology shows that photostimulation evokes abnormal seizure-like neuronal firing in para(bss1) followed by a quiescent period resembling synaptic failure and apparently responsible for paralysis. The pattern of neuronal activity concludes with seizure-like activity just prior to recovery (recovery)...
June 19, 2017: Genetics
https://www.readbyqxmd.com/read/28612236/using-optogenetics-to-assess-neuroendocrine-modulation-of-heart-rate-in-drosophila-melanogaster-larvae
#8
Cole Malloy, Jacob Sifers, Angela Mikos, Aya Samadi, Aya Omar, Christina Hermanns, Robin L Cooper
The Drosophila melanogaster heart has become a principal model in which to study cardiac physiology and development. While the morphology of the heart in Drosophila and mammals is different, many of the molecular mechanisms that underlie heart development and function are similar and function can be assessed by similar physiological measurements, such as cardiac output, rate, and time in systole or diastole. Here, we have utilized an intact, optogenetic approach to assess the neural influence on heart rate in the third instar larvae...
June 13, 2017: Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology
https://www.readbyqxmd.com/read/28604684/sensory-integration-and-neuromodulatory-feedback-facilitate-drosophila-mechanonociceptive-behavior
#9
Chun Hu, Meike Petersen, Nina Hoyer, Bettina Spitzweck, Federico Tenedini, Denan Wang, Alisa Gruschka, Lara S Burchardt, Emanuela Szpotowicz, Michaela Schweizer, Ananya R Guntur, Chung-Hui Yang, Peter Soba
Nociception is an evolutionarily conserved mechanism to encode and process harmful environmental stimuli. Like most animals, Drosophila melanogaster larvae respond to a variety of nociceptive stimuli, including noxious touch and temperature, with stereotyped escape responses through activation of multimodal nociceptors. How behavioral responses to these different modalities are processed and integrated by the downstream network remains poorly understood. By combining trans-synaptic labeling, ultrastructural analysis, calcium imaging, optogenetics and behavioral analyses, we uncovered a circuit specific for mechanonociception but not thermonociception...
June 12, 2017: Nature Neuroscience
https://www.readbyqxmd.com/read/28515683/a-population-of-projection-neurons-that-inhibits-the-lateral-horn-but-excites-the-antennal-lobe-through-chemical-synapses-in-drosophila
#10
Kazumichi Shimizu, Mark Stopfer
In the insect olfactory system, odor information is transferred from the antennal lobe (AL) to higher brain areas by projection neurons (PNs) in multiple AL tracts (ALTs). In several species, one of the ALTs, the mediolateral ALT (mlALT), contains some GABAergic PNs; in the Drosophila brain, the great majority of ventral PNs (vPNs) are GABAergic and project through this tract to the lateral horn (LH). Most excitatory PNs (ePNs), project through the medial ALT (mALT) to the mushroom body (MB) and the LH. Recent studies have shown that GABAergic vPNs play inhibitory roles at their axon terminals in the LH...
2017: Frontiers in Neural Circuits
https://www.readbyqxmd.com/read/28502772/representations-of-novelty-and-familiarity-in-a-mushroom-body-compartment
#11
Daisuke Hattori, Yoshinori Aso, Kurtis J Swartz, Gerald M Rubin, L F Abbott, Richard Axel
Animals exhibit a behavioral response to novel sensory stimuli about which they have no prior knowledge. We have examined the neural and behavioral correlates of novelty and familiarity in the olfactory system of Drosophila. Novel odors elicit strong activity in output neurons (MBONs) of the α'3 compartment of the mushroom body that is rapidly suppressed upon repeated exposure to the same odor. This transition in neural activity upon familiarization requires odor-evoked activity in the dopaminergic neuron innervating this compartment...
May 18, 2017: Cell
https://www.readbyqxmd.com/read/28502656/temporal-cohorts-of-lineage-related-neurons-perform-analogous-functions-in-distinct-sensorimotor-circuits
#12
Christopher C Wreden, Julia L Meng, Weidong Feng, Wanhao Chi, Zarion D Marshall, Ellie S Heckscher
Neuronal stem cell lineages are the fundamental developmental units of the brain, and neuronal circuits are the fundamental functional units of the brain. Determining lineage-circuitry relationships is essential for deciphering the developmental logic of circuit assembly. While the spatial distribution of lineage-related neurons has been investigated in a few brain regions [1-9], an important, but unaddressed question is whether temporal information that diversifies neuronal progeny within a single lineage also impacts circuit assembly...
May 22, 2017: Current Biology: CB
https://www.readbyqxmd.com/read/28473639/ring-attractor-dynamics-in-the-drosophila-central-brain
#13
Sung Soo Kim, Hervé Rouault, Shaul Druckmann, Vivek Jayaraman
Ring attractors are a class of recurrent networks hypothesized to underlie the representation of heading direction. Such network structures, schematized as a ring of neurons whose connectivity depends on their heading preferences, can sustain a bump-like activity pattern whose location can be updated by continuous shifts along either turn direction. We recently reported that a population of fly neurons represents the animal's heading via bump-like activity dynamics. We combined two-photon calcium imaging in head-fixed flying flies with optogenetics to overwrite the existing population representation with an artificial one, which was then maintained by the circuit with naturalistic dynamics...
May 4, 2017: Science
https://www.readbyqxmd.com/read/28442946/optogenetic-rescue-of-locomotor-dysfunction-and-dopaminergic-degeneration-caused-by-alpha-synuclein-and-eko-genes
#14
Cheng Qi, Scott Varga, Soo-Jin Oh, C Justin Lee, Daewoo Lee
α-Synuclein (α-Syn) is a small presynaptic protein and its mutant forms (e.g. A53T) are known to be directly associated with Parkinson's disease (PD). Pathophysiological mechanisms underlying α-Syn-mediated neurodegeneration in PD still remain to be explored. However, several studies strongly support that overexpression of mutant α-Syn causes reduced release of dopamine (DA) in the brain, and contributes to motor deficits in PD. Using a favorable genetic model Drosophila larva, we examined whether reduced DA release is enough to induce key PD symptoms (i...
April 2017: Experimental Neurobiology
https://www.readbyqxmd.com/read/28406187/cell-matrix-adhesion-and-cell-cell-adhesion-differentially-control-basal-myosin-oscillation-and-drosophila-egg-chamber-elongation
#15
Xiang Qin, Byung Ouk Park, Jiaying Liu, Bing Chen, Valerie Choesmel-Cadamuro, Karine Belguise, Won Do Heo, Xiaobo Wang
Pulsatile actomyosin contractility, important in tissue morphogenesis, has been studied mainly in apical but less in basal domains. Basal myosin oscillation underlying egg chamber elongation is regulated by both cell-matrix and cell-cell adhesions. However, the mechanism by which these two adhesions govern basal myosin oscillation and tissue elongation is unknown. Here we demonstrate that cell-matrix adhesion positively regulates basal junctional Rho1 activity and medio-basal ROCK and myosin activities, thus strongly controlling tissue elongation...
April 13, 2017: Nature Communications
https://www.readbyqxmd.com/read/28401598/dcf1-improves-behavior-deficit-in-drosophila-and-mice-caused-by-optogenetic-suppression
#16
Qiang Liu, Linhua Gan, Jian Ni, Yu Chen, Yanlu Chen, Zhili Huang, Xu Huang, Tieqiao Wen
Optogenetics play a significant role in neuroscientific research by providing a tool for understanding neural circuits and brain functions. Natronomonas pharaonis halorhodopsin (NpHR) actively pumps chloride ions into the cells and hyperpolarizes neuronal membranes in response to yellow light. In this study, we generated transgenic Drosophila expressing NpHR under the control of the Gal4/UAS system and virus-infected mice expressing NpHR to explore the effect of dendritic cell factor 1 (Dcf1) on the behavior mediated by the mushroom body in Drosophila and the dentate gyrus (DG) in mice...
April 12, 2017: Journal of Cellular Biochemistry
https://www.readbyqxmd.com/read/28332980/a-receptor-and-neuron-that-activate-a-circuit-limiting-sucrose-consumption
#17
Ryan M Joseph, Jennifer S Sun, Edric Tam, John R Carlson
The neural control of sugar consumption is critical for normal metabolism. In contrast to sugar-sensing taste neurons that promote consumption, we identify a taste neuron that limits sucrose consumption in Drosophila. Silencing of the neuron increases sucrose feeding; optogenetic activation decreases it. The feeding inhibition depends on the IR60b receptor, as shown by behavioral analysis and Ca(2+) imaging of an IR60b mutant. The IR60b phenotype shows a high degree of chemical specificity when tested with a broad panel of tastants...
March 23, 2017: ELife
https://www.readbyqxmd.com/read/28215335/optogenetic-inhibition-of-apical-constriction-during-drosophila-embryonic-development
#18
G Guglielmi, S De Renzis
Morphogenesis of multicellular organisms is driven by changes in cell behavior, which happen at precise locations and defined developmental stages. Therefore, the studying of morphogenetic events would greatly benefit from tools that allow the perturbation of cell activity with spatial and temporal precision. We recently developed an optogenetic approach to modulate cell contractility with cellular precision and on fast (seconds) timescales during Drosophila embryogenesis. We present here a protocol to handle genetically engineered photosensitive Drosophila embryos and achieve light-mediated inhibition of apical constriction during tissue invagination...
2017: Methods in Cell Biology
https://www.readbyqxmd.com/read/28118601/the-spatiotemporal-limits-of-developmental-erk-signaling
#19
Heath E Johnson, Yogesh Goyal, Nicole L Pannucci, Trudi Schüpbach, Stanislav Y Shvartsman, Jared E Toettcher
Animal development is characterized by signaling events that occur at precise locations and times within the embryo, but determining when and where such precision is needed for proper embryogenesis has been a long-standing challenge. Here we address this question for extracellular signal regulated kinase (Erk) signaling, a key developmental patterning cue. We describe an optogenetic system for activating Erk with high spatiotemporal precision in vivo. Implementing this system in Drosophila, we find that embryogenesis is remarkably robust to ectopic Erk signaling, except from 1 to 4 hr post-fertilization, when perturbing the spatial extent of Erk pathway activation leads to dramatic disruptions of patterning and morphogenesis...
January 23, 2017: Developmental Cell
https://www.readbyqxmd.com/read/28115483/gap-junction-mediated-signaling-from-motor-neurons-regulates-motor-generation-in-the-central-circuits-of-larval-drosophila
#20
Teruyuki Matsunaga, Hiroshi Kohsaka, Akinao Nose
In this study, we used the peristaltic crawling of Drosophila larvae as a model to study how motor patterns are regulated by central circuits. We built an experimental system that allows simultaneous application of optogenetics and calcium imaging to the isolated ventral nerve cord (VNC). We then investigated the effects of manipulating local activity of motor neurons (MNs) on fictive locomotion observed as waves of MN activity propagating along neuromeres. Optical inhibition of MNs with halorhodopsin3 (NpHR3) in a middle segment (A4, A5 or A6), but not other segments, dramatically decreased the frequency of the motor waves...
January 23, 2017: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
keyword
keyword
68405
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"