keyword
MENU ▼
Read by QxMD icon Read
search

tissue engineered vascular graft

keyword
https://www.readbyqxmd.com/read/28817384/engineering-the-mechanical-and-biological-properties-of-nanofibrous-vascular-grafts-for-in-situ-vascular-tissue-engineering
#1
Jeffrey J D Henry, Jian Yu, Aijun Wang, Randall Lee, Jun Fang, Song Li
Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts...
August 17, 2017: Biofabrication
https://www.readbyqxmd.com/read/28816087/small-diameter-vascular-graft-with-fibroblast-cells-and-electrospun-poly-l-lactide-co-%C3%AE%C2%B5-caprolactone-scaffolds-cell-matrix-engineering
#2
Bong Seok Jang, Ja Young Cheon, Soo Hyun Kim, Won Ho Park
Electrospun scaffolds have been widely used in tissue engineering due to their similar structure to native extracellular matrices (ECM). However, one of the obstacles limiting the application of electrospun scaffolds for tissue engineering is the nano-sized pores, which inhibit cell infiltration into the scaffolds. To overcome this limitation, we approached to make layers which are consisted of cells onto the electrospun sheet and then tubular structure was constructed by rolling. We called this as "Cell Matrix Engineering" because the electrospun sheets were combined with the cells to form one matrix...
August 17, 2017: Journal of Biomaterials Science. Polymer Edition
https://www.readbyqxmd.com/read/28805140/a-rat-model-for-the-in-vivo-assessment-of-biological-and-tissue-engineered-valvular-and-vascular-grafts
#3
Yukiharu Sugimura, Anna Kathrin Schmidt, Artur Lichtenberg, Alexander Assmann, Payam Akhyari
The demand for an improvement of the biocompatibility and durability of vascular and valvular implants requires translational animal models to study the in vivo fate of cardiovascular grafts. In the present article, a review on the development and application of a microsurgical rat model of infrarenal implantation of aortic grafts and aortic valved conduits is provided. By refinement of surgical techniques and inclusion of hemodynamic considerations, a functional model has been created, which provides a modular platform for the in vivo assessment of biological and tissue-engineered grafts...
August 12, 2017: Tissue Engineering. Part C, Methods
https://www.readbyqxmd.com/read/28762052/in-vitro-mechanical-property-evaluation-of-chitosan-based-hydrogels-intended-for-vascular-graft-development
#4
Audrey Aussel, Alexandra Montembault, Sébastien Malaise, Marie Pierre Foulc, William Faure, Sandro Cornet, Rachida Aid, Marc Chaouat, Thierry Delair, Didier Letourneur, Laurent David, Laurence Bordenave
Vascular grafts made of synthetic polymers perform poorly in cardiac and peripheral bypass applications. In these applications, chitosan-based materials can be produced and shaped to provide a novel scaffold for vascular tissue engineering. The goal of this study was to evaluate in vitro the mechanical properties of a novel chitosan formulation to assess its potential for this scaffold. Two chitosan-based hydrogel tubes were produced by modulating chitosan concentration. Based on the standard ISO 7198:1998, the hydrogel tubes were characterized in vitro in terms of suture retention strength, tensile strength, compliance, and burst pressure...
July 31, 2017: Journal of Cardiovascular Translational Research
https://www.readbyqxmd.com/read/28754230/tissue-engineered-vascular-grafts-for-congenital-cardiac-disease-clinical-experience-and-current-status
#5
REVIEW
Joseph D Drews, Hideki Miyachi, Toshiharu Shinoka
Congenital heart disease is a leading cause of death in the newborn period, and man-made grafts currently used for reconstruction are associated with multiple complications. Tissue engineering can provide an alternative source of vascular tissue in congenital cardiac surgery. Clinical trials have been successful overall, but the most frequent complication is graft stenosis. Recent studies in animal models have indicated the important role of the recipient׳s immune response in neotissue formation, and that modulating the immune response can reduce the incidence of stenosis...
June 21, 2017: Trends in Cardiovascular Medicine
https://www.readbyqxmd.com/read/28754174/rnai-therapy-to-the-wall-of-arteries-and-veins-anatomical-physiologic-and-pharmacological-considerations
#6
REVIEW
Christoph S Nabzdyk, Leena Pradhan-Nabzdyk, Frank W LoGerfo
BACKGROUND: Cardiovascular disease remains a major health care challenge. The knowledge about the underlying mechanisms of the respective vascular disease etiologies has greatly expanded over the last decades. This includes the contribution of microRNAs, endogenous non-coding RNA molecules, known to vastly influence gene expression. In addition, short interference RNA has been established as a mechanism to temporarily affect gene expression. This review discusses challenges relating to the design of a RNA interference therapy strategy for the modulation of vascular disease...
July 28, 2017: Journal of Translational Medicine
https://www.readbyqxmd.com/read/28742686/bioengineering-a-human-face-graft-the-matrix-of-identity
#7
Jérôme Duisit, Louis Maistriaux, Adriano Taddeo, Giuseppe Orlando, Virginie Joris, Emmanuel Coche, Catherine Behets, Jan Lerut, Chantal Dessy, Giulio Cossu, Esther Vögelin, Robert Rieben, Pierre Gianello, Benoît Lengelé
OBJECTIVE: During the last decade, face allotransplantation has been shown to be a revolutionary reconstructive procedure for severe disfigurements. However, offer to patients remains limited due to lifelong immunosuppression. To move forward in the field, a new pathway in tissue engineering is proposed. BACKGROUND: Our previously reported technique of matrix production of a porcine auricular subunit graft has been translated to a human face model. METHODS: 5 partial and 1 total face grafts were procured from human fresh cadavers...
July 24, 2017: Annals of Surgery
https://www.readbyqxmd.com/read/28741438/bilateral-arteriovenous-shunts-as-a-method-for-evaluating-tissue-engineered-vascular-grafts-in-large-animal-models
#8
Chin Siang Ong, Takuma Fukunishi, Rui Han Liu, Kevin Nelson, Huaitao Zhang, Elizabeth Wieczorek, McKenna Palmieri, Yukie Ueyama, Erin Ferris, Gail E Geist, Bradley L Youngblood, Jed Johnson, Narutoshi Hibino
There remains a need for large animal models to evaluate tissue engineered vascular grafts (TEVGs) under arterial pressure to provide preclinical data for future potential human clinical trials. We present a comprehensive method for the interrogation of TEVGs, using an ovine bilateral arteriovenous shunt implantation model. Our results demonstrate that this method can be performed safely without complications, specifically acute heart failure, steal syndrome, and hypoxic brain injury and is a viable experimental paradigm...
July 25, 2017: Tissue Engineering. Part C, Methods
https://www.readbyqxmd.com/read/28739721/a-preclinical-study-of-cell-seeded-tubularized-scaffolds-specially-secreting-ll37-for-reconstruction-of-long-urethral-defects
#9
Yongwei Li, Jitao Wu, Fan Feng, Changping Men, Diandong Yang, Zhenli Gao, Zhe Zhu, Yuanshan Cui, Hongwei Zhao
AIM: We constructed a new artificial, long tubular acellular matrix, seeded with autologous progenitor cells transfected with the sequence to produce the antibiotic peptide LL37 and another two common seeding cells, which might be adopted for patients requiring repair of long segment of the urethra. MATERIALS AND METHODS: Autologous endothelial progenitor cells transfected by lentiviral vectors expressing antibiotic peptide LL37, as well as urothelial and smooth muscle cells from New Zealand white male rabbits, were cultured and seeded onto preconfigured acellular collagen-based tubular matrices (3 cm in length)...
August 2017: Anticancer Research
https://www.readbyqxmd.com/read/28739545/an-optimized-non-destructive-protocol-for-testing-mechanical-properties-in-decellularized-rabbit-trachea
#10
M Den Hondt, B M Vanaudenaerde, E F Maughan, C R Butler, C Crowley, E K Verbeken, S E Verleden, J J Vranckx
Successful tissue-engineered tracheal transplantation relies on the use of non-immunogenic constructs, which can vascularize rapidly, support epithelial growth, and retain mechanical properties to that of native trachea. Current strategies to assess mechanical properties fail to evaluate the trachea to its physiological limits, and lead to irreversible destruction of the construct. Our aim was to develop and evaluate a novel non-destructive method for biomechanical testing of tracheae in a rabbit decellularization model...
July 21, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28717129/3d-printed-scaffolds-of-calcium-silicate-doped-%C3%AE-tcp-synergize-with-co-cultured-endothelial-and-stromal-cells-to-promote-vascularization-and-bone-formation
#11
Yuan Deng, Chuan Jiang, Cuidi Li, Tao Li, Mingzheng Peng, Jinwu Wang, Kerong Dai
Synthetic bone scaffolds have potential application in repairing large bone defects, however, inefficient vascularization after implantation remains the major issue of graft failure. Herein, porous β-tricalcium phosphate (β-TCP) scaffolds with calcium silicate (CS) were 3D printed, and pre-seeded with co-cultured human umbilical cord vein endothelial cells (HUVECs) and human bone marrow stromal cells (hBMSCs) to construct tissue engineering scaffolds with accelerated vascularization and better bone formation...
July 17, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28680888/early-graft-tunnel-healing-after-anterior-cruciate-ligament-reconstruction-with-intratunnel-injection-of-bone-marrow-mesenchymal-stem-cells-and-vascular-endothelial-growth-factor
#12
Rosy Setiawati, Dwikora Novembri Utomo, Fedik Abdul Rantam, Nadia Nastassia Ifran, Nicolaas C Budhiparama
BACKGROUND: Bone marrow mesenchymal stem cells (BM-MSCs) are multipotent adult stem cells and have become an important source of cells for engineering tissue repair and cell therapy. Vascular endothelial growth factor (VEGF) promotes angiogenesis and contributes fibrous integration between tendon and bone during the early postoperative stage. Both MSCs and VEGF can stimulate cell proliferation, differentiation, and matrix deposition by enhancing angiogenesis and osteogenesis of the graft in the tunnel...
June 2017: Orthopaedic Journal of Sports Medicine
https://www.readbyqxmd.com/read/28674697/cell-free-vascular-grafts-recent-developments-and-clinical-potential
#13
Sindhu Row, Ana Santandreu, Daniel D Swartz, Stelios T Andreadis
Recent advances in vascular tissue engineering have led to the development of cell-free grafts that are available off-the-shelf for on demand surgery. Challenges associated with cell-based technologies including cell sourcing, cell expansion and long-term bioreactor culture motivated the development of completely cell-free vascular grafts. These are based on decellularized arteries, decellularized cultured cell-based tissue engineered grafts or biomaterials functionalized with biological signals that promote in situ tissue regeneration...
March 2017: Technology
https://www.readbyqxmd.com/read/28671618/vascular-mechanobiology-towards-control-of-in-situ-regeneration
#14
REVIEW
Eline E van Haaften, Carlijn V C Bouten, Nicholas A Kurniawan
The paradigm of regenerative medicine has recently shifted from in vitro to in situ tissue engineering: implanting a cell-free, biodegradable, off-the-shelf available scaffold and inducing the development of functional tissue by utilizing the regenerative potential of the body itself. This approach offers a prospect of not only alleviating the clinical demand for autologous vessels but also circumventing the current challenges with synthetic grafts. In order to move towards a hypothesis-driven engineering approach, we review three crucial aspects that need to be taken into account when regenerating vessels: (1) the structure-function relation for attaining mechanical homeostasis of vascular tissues, (2) the environmental cues governing cell function, and (3) the available experimental platforms to test instructive scaffolds for in situ tissue engineering...
July 3, 2017: Cells
https://www.readbyqxmd.com/read/28667291/a-biomimetic-heparinized-composite-silk-based-vascular-scaffold-with-sustained-antithrombogenicity
#15
Masoud Zamani, Mona Khafaji, Mohammad Naji, Manouchehr Vossoughi, Iran Alemzadeh, Nooshin Haghighipour
Autologous grafts, as the gold standard for vascular bypass procedures, associated with several problems that limit their usability, so tissue engineered vessels have been the subject of an increasing number of works. Nevertheless, gathering all of the desired characteristics of vascular scaffolds in the same construct has been a big challenge for scientists. Herein, a composite silk-based vascular scaffold (CSVS) was proposed to consider all the mechanical, structural and biological requirements of a small-diameter vascular scaffold...
June 30, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28665233/decellularization-of-whole-human-liver-grafts-using-controlled-perfusion-for-transplantable-organ-bioscaffolds
#16
Monique M A Verstegen, Jorke Willemse, Sjoerd van den Hoek, Gert-Jan Kremers, Theo M Luider, Nick A van Huizen, Francois E J A Willemssen, Herold J Metselaar, Jan N M IJzermans, Luc J W van der Laan, Jeroen de Jonge
Liver transplantation is the only effective treatment for end-stage liver disease, but absolute donor shortage remains a limiting factor. Recent advances in tissue engineering focus on generation of native extracellular matrix (ECM) by decellularized complete livers in animal models. Although proof of concept has been reported for human livers, this study aims to perform whole liver decellularization in a clinically relevant series using controlled machine perfusion. In this study, we describe a mild nondestructive decellularization protocol, effective in 11 discarded human whole liver grafts to generate constructs that reliably maintain hepatic architecture and ECM components using machine perfusion, while completely removing cellular DNA and RNA...
July 31, 2017: Stem Cells and Development
https://www.readbyqxmd.com/read/28657470/point-of-care-adipose-derived-stromal-vascular-fraction-cell-isolation-and-expanded-polytetrafluoroethylene-graft-sodding
#17
Stuart K Williams, Marvin E Morris, Paul E Kosnik, Kevin D Lye, Gary D Gentzkow, Charles B Ross, Amit J Dwevidi, Leigh B Kleinert
Adipose-derived stromal vascular fraction (SVF) cell populations are being evaluated for numerous clinical applications. The current study evaluated a point-of-care technology, the Tissue Genesis "TGI 1000" Cell Isolation System™, to perform an automated isolation of adipose-derived SVF cells to be used in the fabrication of a tissue-engineered vascular graft in the operating room. A total of seven patients were enrolled in this study and received femoral to tibial expanded polytetrafluoroethylene bypass grafts to treat peripheral arterial disease...
August 2017: Tissue Engineering. Part C, Methods
https://www.readbyqxmd.com/read/28643432/the-penetration-and-phenotype-modulation-of-smooth-muscle-cells-on-surface-heparin-modified-poly-%C3%AE%C2%B5-caprolactone-vascular-scaffold
#18
Jie Cao, Xue Geng, Juan Wen, Qingxuan Li, Lin Ye, Aiying Zhang, Zengguo Feng, Lianrui Guo, Yongquan Gu
The tubular porous poly(ε-caprolactone)(PCL) scaffold was fabricated by electrospinning. After then, the scaffold's surface was firstly eroded by hexyldiamine to endow amine group, and heparin was covalently grafted to the surface to get surface heparin modified scaffold(ShPCL scaffold). It was found that ShPCL scaffold can induce smooth muscle cells (SMCs) to penetrate the scaffold surface, while the SMCs can't penetrate the surface of PCL scaffold. Subsequently, the rabbit SMCs were seeded on the ShPCL scaffold and cultured for 14 days...
June 23, 2017: Journal of Biomedical Materials Research. Part A
https://www.readbyqxmd.com/read/28642016/electrospun-vascular-scaffold-for-cellularized-small-diameter-blood-vessels-a-preclinical-large-animal-study
#19
Young Min Ju, Hyunhee Ahn, Juan Arenas-Herrera, Cheil Kim, Mehran Abolbashari, Anthony Atala, James J Yoo, Sang Jin Lee
The strategy of vascular tissue engineering is to create a vascular substitute by combining autologous vascular cells with a tubular-shaped biodegradable scaffold. We have previously developed a novel electrospun bilayered vascular scaffold that provides proper biological and biomechanical properties as well as structural configuration. In this study, we investigated the clinical feasibility of a cellularized vascular scaffold in a preclinical large animal model. We fabricated the cellularized vascular construct with autologous endothelial progenitor cell (EPC)-derived endothelial cells (ECs) and smooth muscle cells (SMCs) followed by a pulsatile bioreactor preconditioning...
September 1, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28604360/chitosan-based-hydrogels-for-developing-a-small-diameter-vascular-graft-in-vitro-and-in-vivo-evaluation
#20
Audrey Aussel, Noélie Thébaud, Xavier Berard, Vincenzo Brizzi, Samantha Delmond, Reine Bareille, Robin Siadous, Chloe James, Jean Ripoche, Marlène Durand, Alexandra Montembault, Béatrice Burdin, Didier Letourneur, Nicolas L'Heureux, Laurent David, Laurence Bordenave
Vascular grafts made of synthetic polymers perform poorly in small-diameter applications (cardiac and peripheral bypass). Chitosan is a biocompatible natural polymer that can provide a novel biological scaffold for tissue engineering development. The goal of this study was to demonstrate the biocompatibility of a novel chitosan preparation in vitro and in vivo, and to assess its potential as a scaffold for vascular applications. Methods and Results. A series of experiments of increasing complexity, ranging from in vitro biocompatibility and hemocompatibility tests to in vivo studies in small and large animals (rat and sheep), was performed to provide a comprehensive analysis of chitosan hydrogels' biological properties...
June 12, 2017: Biomedical Materials
keyword
keyword
68193
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"