keyword
MENU ▼
Read by QxMD icon Read
search

tissue engineered blood vessel

keyword
https://www.readbyqxmd.com/read/28213096/ectopic-tissue-engineered-ligament-with-silk-collagen-scaffold-for-acl-regeneration-a-preliminary-study
#1
Jisheng Ran, Yejun Hu, Huihui Le, Yangwu Chen, Zefeng Zheng, Xiao Chen, Zi Yin, Ruijian Yan, Zhangchu Jin, Chenqi Tang, Jiayun Huang, Yanjia Gu, Langhai Xu, Shengjun Qian, Wei Zhang, Boon Chin Heng, Pioletti Dominique, Weishan Chen, Lidong Wu, Weiliang Shen, Hongwei Ouyang
: Anterior cruciate ligament (ACL) reconstruction remains a formidable clinical challenge because of the lack of vascularization and adequate cell numbers in the joint cavity. In this study, we developed a novel strategy to mimic the early stage of repair in vivo, which recapitulated extra-articular inflammatory response to facilitate the early ingrowth of blood vessels and cells. A vascularized ectopic tissue engineered ligament (ETEL) with silk collagen scaffold was developed and then transferred to reconstruct the ACL in rabbits without interruption of perfusion...
February 14, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28209379/endocultivation-continuous-application-of-rhbmp-2-via-mini-osmotic-pumps-to-induce-bone-formation-at-extraskeletal-sites
#2
B E Beck-Broichsitter, S T Becker, H Seitz, J Wiltfang, P H Warnke
The continuous presence of recombinant human bone morphogenetic protein 2 (rhBMP-2) inside a scaffold may be crucial to the outcome in bone tissue engineering. This study investigated whether the release of the growth factor rhBMP-2 via different continuous application schemes influences histomorphological aspects of the hard and soft tissues induced. Three-dimensionally printed hydroxyapatite scaffolds were implanted into one latissimus dorsi muscle of 42 female Lewis rats. Simultaneously implanted mini-osmotic pumps were used to provide a continuous application of rhBMP-2 over 1, 2, or 4 weeks (total dose 200μg)...
February 10, 2017: International Journal of Oral and Maxillofacial Surgery
https://www.readbyqxmd.com/read/28205013/utilizing-the-foreign-body-response-to-grow-tissue-engineered-blood-vessels-in-vivo
#3
Wouter J Geelhoed, Lorenzo Moroni, Joris I Rotmans
It is well known that the number of patients requiring a vascular grafts for use as vessel replacement in cardiovascular diseases, or as vascular access site for hemodialysis is ever increasing. The development of tissue engineered blood vessels (TEBV's) is a promising method to meet this increasing demand vascular grafts, without having to rely on poorly performing synthetic options such as polytetrafluoroethylene (PTFE) or Dacron. The generation of in vivo TEBV's involves utilizing the host reaction to an implanted biomaterial for the generation of completely autologous tissues...
February 15, 2017: Journal of Cardiovascular Translational Research
https://www.readbyqxmd.com/read/28194536/the-role-of-vasculature-in-bone-development-regeneration-and-proper-systemic-functioning
#4
REVIEW
Joanna Filipowska, Krzysztof A Tomaszewski, Łukasz Niedźwiedzki, Jerzy A Walocha, Tadeusz Niedźwiedzki
Bone is a richly vascularized connective tissue. As the main source of oxygen, nutrients, hormones, neurotransmitters and growth factors delivered to the bone cells, vasculature is indispensable for appropriate bone development, regeneration and remodeling. Bone vasculature also orchestrates the process of hematopoiesis. Blood supply to the skeletal system is provided by the networks of arteries and arterioles, having distinct molecular characteristics and localizations within the bone structures. Blood vessels of the bone develop through the process of angiogenesis, taking place through different, bone-specific mechanisms...
February 13, 2017: Angiogenesis
https://www.readbyqxmd.com/read/28192772/direct-3d-bioprinting-of-prevascularized-tissue-constructs-with-complex-microarchitecture
#5
Wei Zhu, Xin Qu, Jie Zhu, Xuanyi Ma, Sherrina Patel, Justin Liu, Pengrui Wang, Cheuk Sun Edwin Lai, Maling Gou, Yang Xu, Kang Zhang, Shaochen Chen
Living tissues rely heavily on vascular networks to transport nutrients, oxygen and metabolic waste. However, there still remains a need for a simple and efficient approach to engineer vascularized tissues. Here, we created prevascularized tissues with complex three-dimensional (3D) microarchitectures using a rapid bioprinting method - microscale continuous optical bioprinting (μCOB). Multiple cell types mimicking the native vascular cell composition were encapsulated directly into hydrogels with precisely controlled distribution without the need of sacrificial materials or perfusion...
February 2, 2017: Biomaterials
https://www.readbyqxmd.com/read/28191928/self-assembling-multidomain-peptide-nanofibers-for-delivery-of-bioactive-molecules-and-tissue-regeneration
#6
Amanda N Moore, Jeffrey D Hartgerink
Multidomain peptides (MDPs) are a class of self-assembling peptides that are organized in a β-sheet motif, resulting in a nanofibrous architecture. This structure is stabilized by hydrophobic packing in the fiber core and a hydrogen-bonding network down the fiber long axis. Under easily controllable conditions, regulated by electrostatic interactions between the peptides and the pH and salt composition of the solvent, the nanofiber length can be dramatically extended, resulting in fiber entanglement and hydrogel formation...
February 13, 2017: Accounts of Chemical Research
https://www.readbyqxmd.com/read/28181412/aligned-nanofibrous-cell-derived-extracellular-matrix-for-anisotropic-vascular-graft-construction
#7
Qi Xing, Zichen Qian, Mitchell Tahtinen, Ai Hui Yap, Keegan Yates, Feng Zhao
There is a large demand for tissue engineered vascular grafts for the application of vascular reconstruction surgery or in vitro drug screening tissue model. The extracellular matrix (ECM) composition along with the structural and mechanical anisotropy of native blood vessels is critical to their functional performance. The objective of this study is to develop a biomimetic vascular graft recapitulating the anisotropic features of native blood vessels by employing nanofibrous aligned fibroblast-derived ECM and human mesenchymal stem cells (hMSCs)...
February 9, 2017: Advanced Healthcare Materials
https://www.readbyqxmd.com/read/28164414/microfluidic-traction-force-microscopy-to-study-mechanotransduction-in-angiogenesis
#8
Luke Boldock, Claudia Wittkowske, Cecile M Perrault
The formation of new blood vessels from existing vasculature, angiogenesis, is driven by coordinated endothelial cell migration and matrix remodelling in response to local signals. Recently, a growing body of evidence has shown that mechanotransduction, along with chemotransduction, is a major regulator of angiogenesis. Mechanical signals, such as fluid shear stress and substrate mechanics, influence sprouting and network formation, but the mechanisms behind this relationship are still unclear. Here, we present cellular traction forces as possible effectors activated by mechanosensing to mediate matrix remodelling, and encourage the use of traction force microscopy to study mechanotransduction in angiogenesis...
February 6, 2017: Microcirculation: the Official Journal of the Microcirculatory Society, Inc
https://www.readbyqxmd.com/read/28163239/enhanced-elastin-synthesis-and-maturation-in-human-vascular-smooth-muscle-tissue-derived-from-induced-pluripotent-stem-cells
#9
Joon H Eoh, Nian Shen, Jacqueline A Burke, Svenja Hinderer, Zhiyong Xia, Katja Schenke-Layland, Sharon Gerecht
: Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (L-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue...
February 2, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28161684/silk-based-anisotropical-3d-biotextiles-for-bone-regeneration
#10
Viviana P Ribeiro, Joana Silva-Correia, Ana I Nascimento, Alain da Silva Morais, Alexandra P Marques, Ana S Ribeiro, Carla J Silva, Graça Bonifácio, Rui A Sousa, Joaquim M Oliveira, Ana L Oliveira, Rui L Reis
Bone loss in the craniofacial complex can been treated using several conventional therapeutic strategies that face many obstacles and limitations. In this work, novel three-dimensional (3D) biotextile architectures were developed as a possible strategy for flat bone regeneration applications. As a fully automated processing route, this strategy as potential to be easily industrialized. Silk fibroin (SF) yarns were processed into weft-knitted fabrics spaced by a monofilament of polyethylene terephthalate (PET)...
January 26, 2017: Biomaterials
https://www.readbyqxmd.com/read/28140340/electrospun-scaffolds-functionalized-with-heparin-and-vegf-increase-the-proliferation-of-endothelial-progenitor-cells
#11
Daikelly Iglesias Braghirolli, Virgínia Helfer, Pedro Chagastelles, Tiago Dalberto, Douglas Gamba, Patricia Pranke
In severe cases of peripheral arterial disease, tissue loss can occur and the use of vascular grafts can be necessary. However, currently, there are no suitable substitutes for application in small diameter vessels. The aim of this work has been to produce scaffolds with adequate properties for application as vascular substitutes. Polycaprolactone scaffolds were produced by the electrospinning technique. The surface of the scaffolds was functionalized with heparin and vascular endothelial growth factor (VEGF) and their physical-chemical properties were characterized...
January 31, 2017: Biomedical Materials
https://www.readbyqxmd.com/read/28135073/the-endothelial-glycocalyx-controls-interactions-of-quantum-dots-with-the-endothelium-and-their-translocation-across-the-blood-tissue-border
#12
Bernd Uhl, Stephanie Hirn, Roland Immler, Karina Mildner, Leonhard Möckl, Markus Sperandio, Christoph Bräuchle, Christoph A Reichel, Dagmar Zeuschner, Fritz Krombach
Advances in the engineering of nanoparticles (NPs), which represent particles of less than 100 nm in one external dimension, led to an increasing utilization of nanomaterials for biomedical purposes. A prerequisite for their use in diagnostic and therapeutic applications, however, is the targeted delivery to the site of injury. Interactions between blood-borne NPs and the vascular endothelium represent a critical step for nanoparticle delivery into diseased tissue. Here, we show that the endothelial glycocalyx, which constitutes a glycoprotein-polysaccharide meshwork coating the luminal surface of vessels, effectively controls interactions of carboxyl-functionalized quantum dots with the microvascular endothelium...
February 7, 2017: ACS Nano
https://www.readbyqxmd.com/read/28112988/platelet-bioreactor-accelerated-evolution-of-design-and-manufacture
#13
Jonathan N Thon, Brad J Dykstra, Lea M Beaulieu
Platelets, responsible for clot formation and blood vessel repair, are produced by megakaryocytes in the bone marrow. Platelets are critical for hemostasis and wound healing, and are often provided following surgery, chemotherapy, and major trauma. Despite their importance, platelets today are derived exclusively from human volunteer donors. They have a shelf life of just five days, making platelet shortages common during long weekends, civic holidays, bad weather, and during major emergencies when platelets are needed most...
January 23, 2017: Platelets
https://www.readbyqxmd.com/read/28110114/tropoelastin-coated-plla-plga-scaffolds-promote-vascular-network-formation
#14
Shira Landau, Ariel A Szklanny, Giselle C Yeo, Yulia Shandalov, Elena Kosobrodova, Anthony S Weiss, Shulamit Levenberg
The robust repair of large wounds and tissue defects relies on blood flow. This vascularization is the major challenge faced by tissue engineering on the path to forming thick, implantable tissue constructs. Without this vasculature, oxygen and nutrients cannot reach the cells located far from host blood vessels. To make viable constructs, tissue engineering takes advantage of the mechanical properties of synthetic materials, while combining them with ECM proteins to create a natural environment for the tissue-specific cells...
January 11, 2017: Biomaterials
https://www.readbyqxmd.com/read/28110073/sphingosine-1-phosphate-improves-endothelialization-with-reduction-of-thrombosis-in-recellularized-human-umbilical-vein-graft-by-inhibiting-syndecan-1-shedding-in-vitro
#15
Kai Hsia, Ming-Jie Yang, Wei-Min Chen, Chao-Ling Yao, Chih-Hsun Lin, Che-Chuan Loong, Yi-Long Huang, Ya-Ting Lin, Arthur D Lander, Hsinyu Lee, Jen-Her Lu
: Sphingosine-1-phosphate (S1P) has been known to promote endothelial cell (EC) proliferation and protect Syndecan-1 (SDC1) from shedding, thereby maintaining this antithrombotic signal. In the present study, we investigated the effect of S1P in the construction of a functional tissue-engineered blood vessel by using human endothelial cells and decellularized human umbilical vein (DHUV) scaffolds. Both human umbilical vein endothelial cells (HUVEC) and human cord blood derived endothelial progenitor cells (EPC) were seeded onto the scaffold with or without the S1P treatment...
January 18, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28093366/strategy-for-constructing-vascularized-adipose-units-in-poly-l-glutamic-acid-hydrogel-porous-scaffold-through-inducing-in-situ-formation-of-ascs-spheroids
#16
Kunxi Zhang, Li Song, Jia Wang, Shifeng Yan, Guifei Li, Lei Cui, Jingbo Yin
: Vascularization is of great importance to adipose tissue regeneration. Here we introduced a paradigm that using scaffold to induce ASC spheroids, so to promote vascularized adipose tissue regeneration. Poly (L-glutamic acid) (PLGA) was activated by EDC, followed by being cross-linked by Adipic dihydrazide (ADH) to form a homogeneous hydrogel. Lyophilization was then carried out to create porous structure. The PLGA hydrogel scaffold possessed a significant swollen hydrophilic network to weaken cell-scaffold adhesion but drive ASCs to aggregate to form spheroids...
January 13, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28092776/periosteum-tissue-engineering-in-an-orthotopic-in%C3%A2-vivo-platform
#17
J G Baldwin, F Wagner, L C Martine, B M Holzapfel, C Theodoropoulos, O Bas, F M Savi, C Werner, E M De-Juan-Pardo, D W Hutmacher
The periosteum plays a critical role in bone homeostasis and regeneration. It contains a vascular component that provides vital blood supply to the cortical bone and an osteogenic niche that acts as a source of bone-forming cells. Periosteal grafts have shown promise in the regeneration of critical size defects, however their limited availability restricts their widespread clinical application. Only a small number of tissue-engineered periosteum constructs (TEPCs) have been reported in the literature. A current challenge in the development of appropriate TEPCs is a lack of pre-clinical models in which they can reliably be evaluated...
March 2017: Biomaterials
https://www.readbyqxmd.com/read/28070690/reconstruction-of-defects-of-the-trachea
#18
Margot Den Hondt, Jan Jeroen Vranckx
The trachea has a complex anatomy to fulfill its tasks. Its unique fibro-cartilaginous structure maintains an open conduit during respiration, and provides vertical elasticity for deglutition, mobility of the neck and speech. Blood vessels pierce the intercartilaginous ligaments to perfuse the ciliated epithelium, which ensures effective mucociliary clearance. Removal of a tracheal segment affected by benign or malignant disease requires airtight restoration of the continuity of the tube. When direct approximation of both tracheal ends is no longer feasible, a reconstruction is needed...
February 2017: Journal of Materials Science. Materials in Medicine
https://www.readbyqxmd.com/read/28069505/end-point-immobilization-of-heparin-on-plasma-treated-surface-of-electrospun-polycarbonate-urethane-vascular-graft
#19
Xuefeng Qiu, Benjamin Li-Ping Lee, Xinghai Ning, Niren Murthy, Nianguo Dong, Song Li
: Small-diameter synthetic vascular grafts have high failure rate due to primarily surface thrombogenicity, and effective surface chemical modification is critical to maintain the patency of the grafts. In this study, we engineered a small-diameter, elastic synthetic vascular graft with off-the-shelf availability and anti-thrombogenic activity. Polycarbonate-urethane (PCU), was electrospun to produce nanofibrous grafts that closely mimicked a native blood vessel in terms of structural and mechanical strength...
January 6, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28052540/engineered-neural-tissue-with-schwann-cell-differentiated-human-dental-pulp-stem-cells-potential-for-peripheral-nerve-repair
#20
Kathleen Sanen, Wendy Martens, Melanie Georgiou, Marcel Ameloot, Ivo Lambrichts, James Phillips
Despite the spontaneous regenerative capacity of the peripheral nervous system, large gap peripheral nerve injuries (PNIs) require bridging strategies. The limitations and suboptimal results obtained with autografts or hollow nerve conduits in the clinic urge the need for alternative treatments. Recently, we have described promising neuroregenerative capacities of Schwann cells derived from differentiated human dental pulp stem cells (d-hDPSCs) in vitro. Here, we extended the in vitro assays to show the pro-angiogenic effects of d-hDPSCs, such as enhanced endothelial cell proliferation, migration and differentiation...
January 4, 2017: Journal of Tissue Engineering and Regenerative Medicine
keyword
keyword
68192
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"