keyword
MENU ▼
Read by QxMD icon Read
search

cardiovascular tissue engineering

keyword
https://www.readbyqxmd.com/read/28734899/strategies-to-develop-endogenous-stem-cell-recruiting-bioactive-materials-for-tissue-repair-and-regeneration
#1
Settimio Pacelli, Sayantani Basu, Jonathan Whitlow, Aparna R Chakravarti, Francisca Acosta, Arushi Varshney, Saman Modaresi, Cory Berkland, Arghya Paul
A leading strategy in tissue engineering is the design of biomimetic scaffolds that stimulate the body's repair mechanisms through the recruitment of endogenous stem cells to sites of injury. Approaches that employ the use of chemoattractant gradients to guide tissue regeneration without external cell sources are favored over traditional cell-based therapies that have limited potential for clinical translation. Following this concept, bioactive scaffolds can be engineered to provide a temporally and spatially controlled release of biological cues, with the possibility to mimic the complex signaling patterns of endogenous tissue regeneration...
July 19, 2017: Advanced Drug Delivery Reviews
https://www.readbyqxmd.com/read/28726917/engineering-micromyocardium-to-delineate-cellular-and-extracellular-regulation-of-myocardial-tissue-contractility
#2
Nethika R Ariyasinghe, Caitlin H Reck, Alyssa A Viscio, Andrew P Petersen, Davi M Lyra-Leite, Nathan Cho, Megan L McCain
Cardiovascular diseases are a leading cause of death, in part due to limitations of existing models of the myocardium. Myocardium consists of aligned, contractile cardiac myocytes interspersed with fibroblasts that synthesize extracellular matrix (ECM). The cellular demographics and biochemical and mechanical properties of the ECM remodel in many different cardiac diseases. However, the impact of diverse cellular and extracellular remodeling on the contractile output of the myocardium are poorly understood...
July 20, 2017: Integrative Biology: Quantitative Biosciences From Nano to Macro
https://www.readbyqxmd.com/read/28715029/anisotropic-microfibrous-scaffolds-enhance-the-organization-and-function-of-cardiomyocytes-derived-from-induced-pluripotent-stem-cells
#3
Maureen Wanjare, Luqia Hou, Karina H Nakayama, Joseph J Kim, Nicholas P Mezak, Oscar J Abilez, Evangeline Tzatzalos, Joseph C Wu, Ngan F Huang
Engineering of myocardial tissue constructs is a promising approach for treatment of coronary heart disease. To engineer myocardial tissues that better mimic the highly ordered physiological arrangement and function of native cardiomyocytes, we generated electrospun microfibrous polycaprolactone scaffolds with either randomly oriented (14 μm fiber diameter) or parallel-aligned (7 μm fiber diameter) microfiber arrangement and co-seeded the scaffolds with human induced pluripotent stem cell-derived cardiomyocytes (iCMs) and endothelial cells (iECs) for up to 12 days after iCM seeding...
July 17, 2017: Biomaterials Science
https://www.readbyqxmd.com/read/28690099/electrospun-polymeric-nanofibers-new-horizons-in-drug-delivery
#4
REVIEW
Shreya Thakkar, Manju Misra
Nanofibers obtained using electrospinning technique are being used since ages especially in fields of textile industry, sensors, filters, protective clothing and tissue engineering. Their use as drug delivery system is an emerging platform in the field of pharmaceuticals and now-a-days formulation scientists are paying great attention to the technology due to several advantages prime being easy modulation of drug release profile depending upon the properties of polymer/polymeric blends/other materials used...
July 8, 2017: European Journal of Pharmaceutical Sciences
https://www.readbyqxmd.com/read/28651145/polymer-structure-property-requirements-for-stereolithographic-3d-printing-of-soft-tissue-engineering-scaffolds
#5
REVIEW
Ryan J Mondschein, Akanksha Kanitkar, Christopher B Williams, Scott S Verbridge, Timothy E Long
This review highlights the synthesis, properties, and advanced applications of synthetic and natural polymers 3D printed using stereolithography for soft tissue engineering applications. Soft tissue scaffolds are of great interest due to the number of musculoskeletal, cardiovascular, and connective tissue injuries and replacements humans face each year. Accurately replacing or repairing these tissues is challenging due to the variation in size, shape, and strength of different types of soft tissue. With advancing processing techniques such as stereolithography, control of scaffold resolution down to the μm scale is achievable along with the ability to customize each fabricated scaffold to match the targeted replacement tissue...
June 6, 2017: Biomaterials
https://www.readbyqxmd.com/read/28649865/dental-stem-cells-recent-progresses-in-tissue-engineering-and-regenerative-medicine
#6
João Botelho, Maria Alzira Cavacas, Vanessa Machado, José João Mendes
Since the disclosure of adult mesenchymal stem cells (MSCs) there have been an intense investigation on the characteristics of these cells and their potentialities. Dental Stem Cells (DSCs) are MSC-like populations with self-renewal capacity and multidifferentiation potential. Currently, there are five main DSCs, dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHED), stem cells from apical papilla (SCAP), periodontal ligament stem cells (PDLSCs), and Dental Follicle Precursor Cells (DFPCs)...
June 24, 2017: Annals of Medicine
https://www.readbyqxmd.com/read/28648749/transcriptome-profiling-of-3d-co-cultured-cardiomyocytes-and-endothelial-cells-under-oxidative-stress-using-a-photocrosslinkable-hydrogel-system
#7
Xiaoshan Yue, Aylin Acun, Pinar Zorlutuna
Myocardial infarction (MI) is one of the most common among cardiovascular diseases. Endothelial cells (ECs) are considered to have protective effects on cardiomyocytes (CMs) under stress conditions such as MI; however, the paracrine CM-EC crosstalk and the resulting endogenous cellular responses that could contribute to this protective effect are not thoroughly investigated. Here we created biomimetic synthetic tissues containing CMs and human induced pluripotent stem cell (hiPSC)-derived ECs (iECs), which showed improved cell survival compared to single cultures under conditions mimicking the aftermath of MI, and performed high-throughput RNA-sequencing to identify target pathways that could govern CM-iEC crosstalk and the resulting improvement in cell viability...
June 23, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28642016/electrospun-vascular-scaffold-for-cellularized-small-diameter-blood-vessels-a-preclinical-large-animal-study
#8
Young Min Ju, Hyunhee Ahn, Juan Arenas-Herrera, Cheil Kim, Mehran Abolbashari, Anthony Atala, James J Yoo, Sang Jin Lee
The strategy of vascular tissue engineering is to create a vascular substitute by combining autologous vascular cells with a tubular-shaped biodegradable scaffold. We have previously developed a novel electrospun bilayered vascular scaffold that provides proper biological and biomechanical properties as well as structural configuration. In this study, we investigated the clinical feasibility of a cellularized vascular scaffold in a preclinical large animal model. We fabricated the cellularized vascular construct with autologous endothelial progenitor cell (EPC)-derived endothelial cells (ECs) and smooth muscle cells (SMCs) followed by a pulsatile bioreactor preconditioning...
June 19, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28629892/engineered-myocardium-model-to-study-the-roles-of-hif-1%C3%AE-and-hif1a-as1-in-paracrine-only-signaling-under-pathological-level-oxidative-stress
#9
Aylin Acun, Pinar Zorlutuna
Studying heart tissue is critical for understanding and developing treatments for cardiovascular diseases. In this work, we fabricated precisely controlled and biomimetic engineered model tissues to study how cell-cell and cell-matrix interactions influence myocardial cell survival upon exposure to pathological level oxidative stress. Specifically, the interactions of endothelial cells (ECs) and cardiomyocytes (CMs), and the role of hypoxia inducible factor-1α (HIF-1α), with its novel alternative regulator, HIF-1α antisense RNA1 (HIF1A-AS1), in these interactions were investigated...
June 16, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28585210/adiponectin-resistance-in-obesity
#10
Atilla Engin
The decrease in adiponectin levels are negatively correlated with chronic subclinical inflammation markers in obesity. The hypertrophic adipocytes cause obesity-linked insulin resistance and metabolic syndrome. Furthermore, macrophage polarization is a key determinant regulating adiponectin receptor (AdipoR1/R2) expression and differential adiponectin-mediated macrophage inflammatory responses in obese individuals. In addition to decrease in adiponectin concentrations, the decline in AdipoR1/R2 mRNA expression leads to a decrement in adiponectin binding to cell membrane, and this turns into attenuation in the adiponectin effects...
2017: Advances in Experimental Medicine and Biology
https://www.readbyqxmd.com/read/28526928/exosomes-in-cardiovascular-medicine
#11
REVIEW
Iain M Dykes
Exosomes are small, extracellular membrane-bound particles that mediate intercellular transport of a cytosolic cargo. Exosomal transfer of micro-RNA can modify gene expression in targeted cells. Exosome-based endocrine/paracrine signaling has been shown to be involved in a wide range of physiological processes including those associated with cardiovascular injury and disease, but remains relatively poorly understood. Exosomes offer great potential to the clinical field, with applications in both diagnostics and therapeutics...
May 19, 2017: Cardiology and Therapy
https://www.readbyqxmd.com/read/28516795/a-comprehensive-guide-to-telocytes-and-their-great-potential-in-cardiovascular-system
#12
I Kucybala, P Janas, S Ciuk, W Cholopiak, W Klimek-Piotrowska, M K Holda
Telocytes, a recently discovered type of interstitial cells, have a very distinctive morphology - the small cell body with long extensions, named telopodes. In our review, apart from introducing general aspects of telocytes, we focus on properties, functions and future potential of those cells in cardiovascular system. However, physiological functions of telocytes in cardiovascular system are still regarded as quite enigmatic. Previous studies claim that they play a role in organogenesis and regeneration, bioelectrical signalling, mechanoelectrical coupling, anti-oxidative protection, angiogenesis and regulation of blood flow...
2017: Bratislavské Lekárske Listy
https://www.readbyqxmd.com/read/28495995/extracellular-vesicles-in-cardiovascular-disease-potential-applications-in-diagnosis-prognosis-and-epidemiology
#13
REVIEW
Felix Jansen, Georg Nickenig, Nikos Werner
Extracellular vesicles originate from diverse subcellular compartments and are released in the extracellular space. By transferring their cargoes into target cells and tissues, they now emerge as novel regulators of intercellular communication between adjacent and remote cells. Because vesicle composition and biological content are specific signatures of cellular activation and injury, their potential as diagnostic and prognostic biomarkers has raised significant interest in cardiovascular diseases. Characterization of circulating vesicles- or nonvesicles-bound nucleic acids represents a valuable tool for diagnosing and monitoring cardiovascular diseases, recently referred to as a liquid biopsy...
May 12, 2017: Circulation Research
https://www.readbyqxmd.com/read/28486019/role-of-bone-marrow-mononuclear-cell-seeding-for-nanofiber-vascular-grafts
#14
Takuma Fukunishi, Cameron A Best, Chin Siang Ong, Tyler Groehl, James Reinhardt, Tai Yi, Hideki Miyachi, Huaitao Zhang, Toshiharu Shinoka, Christopher K Breuer, Jed Johnson, Narutoshi Hibino
OBJECTIVE: Electrospinning is a promising technology that provides biodegradable nanofiber scaffolds for cardiovascular tissue engineering. However, success with these materials has been limited, and the optimal combination of scaffold parameters for a tissue-engineered vascular graft (TEVG) remains elusive. The purpose of the present study is to evaluate the effect of bone marrow mononuclear cell (BM-MNC) seeding in electrospun scaffolds to support the rational design of optimized TEVGs...
June 13, 2017: Tissue Engineering. Part A
https://www.readbyqxmd.com/read/28471698/design-approaches-to-myocardial-and-vascular-tissue-engineering
#15
Olukemi O Akintewe, Erin G Roberts, Nae-Gyune Rim, Michael A H Ferguson, Joyce Y Wong
Engineered tissues represent an increasingly promising therapeutic approach for correcting structural defects and promoting tissue regeneration in cardiovascular diseases. One of the challenges associated with this approach has been the necessity for the replacement tissue to promote sufficient vascularization to maintain functionality after implantation. This review highlights a number of promising prevascularization design approaches for introducing vasculature into engineered tissues. Although we focus on encouraging blood vessel formation within myocardial implants, we also discuss techniques developed for other tissues that could eventually become relevant to engineered cardiac tissues...
June 21, 2017: Annual Review of Biomedical Engineering
https://www.readbyqxmd.com/read/28457180/edc-cross-linking-of-decellularized-tissue-a-promising-approach
#16
Nadine Lehmann, Torsten Christ, Aila Daugs, Oliver Bloch, Sebastian Holinski
BACKGROUND: Decellularization of xenogenous cardiovascular structures is a promising approach to create scaffolds for tissue engineering. Unfortunately, handling and pliability of the unfixed tissue is challenging. N-(3-dimethylaminopropyl)-N9-ethylcarbodiimide (EDC) is an alternative cross-linking agent to glutaraldehyde (GA). Applied in native tissue, it provides biocompatibility and shows no potential for calcification. In addition, EDC can be used to link growth factors (GFs) to tissue scaffolds after decellularization...
May 15, 2017: Tissue Engineering. Part A
https://www.readbyqxmd.com/read/28455712/macrophages-role-in-tissue-disease-and-regeneration
#17
Lewis Gaffney, Paul Warren, Emily A Wrona, Matthew B Fisher, Donald O Freytes
Inflammation is an essential component of the normal mammalian host tissue response and plays an important role during cardiovascular and musculoskeletal diseases. Given the important role of inflammation on the host tissue response after injury, understanding this process represents essential aspects of biomedical research, tissue engineering, and regenerative medicine. Macrophages are central players during the inflammatory response with an extensive role during wound healing. These cells exhibit a spectrum of activation states that span from pro-inflammatory to pro-healing phenotypes...
2017: Results and Problems in Cell Differentiation
https://www.readbyqxmd.com/read/28341826/poly-ethylmethacrylate-co-diethylaminoethyl-acrylate-coating-improves-endothelial-re-population-bio-mechanical-and-anti-thrombogenic-properties-of-decellularized-carotid-arteries-for-blood-vessel-replacement
#18
Elena López-Ruiz, Seshasailam Venkateswaran, Macarena Perán, Gema Jiménez, Salvatore Pernagallo, Juan J Díaz-Mochón, Olga Tura-Ceide, Francisco Arrebola, Juan Melchor, Juan Soto, Guillermo Rus, Pedro J Real, María Diaz-Ricart, Antonio Conde-González, Mark Bradley, Juan A Marchal
Decellularized vascular scaffolds are promising materials for vessel replacements. However, despite the natural origin of decellularized vessels, issues such as biomechanical incompatibility, immunogenicity risks and the hazards of thrombus formation, still need to be addressed. In this study, we coated decellularized vessels obtained from porcine carotid arteries with poly (ethylmethacrylate-co-diethylaminoethylacrylate) (8g7) with the purpose of improving endothelial coverage and minimizing platelet attachment while enhancing the mechanical properties of the decellularized vascular scaffolds...
March 24, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28335261/nanomaterials-for-cardiac-myocyte-tissue-engineering
#19
REVIEW
Rodolfo Amezcua, Ajay Shirolkar, Carolyn Fraze, David A Stout
Since their synthesizing introduction to the research community, nanomaterials have infiltrated almost every corner of science and engineering. Over the last decade, one such field has begun to look at using nanomaterials for beneficial applications in tissue engineering, specifically, cardiac tissue engineering. During a myocardial infarction, part of the cardiac muscle, or myocardium, is deprived of blood. Therefore, the lack of oxygen destroys cardiomyocytes, leaving dead tissue and possibly resulting in the development of arrhythmia, ventricular remodeling, and eventual heart failure...
July 19, 2016: Nanomaterials
https://www.readbyqxmd.com/read/28324469/stem-cells-in-cardiovascular-medicine-the-road-to-regenerative-therapies
#20
REVIEW
Christopher W Anderson, Nicole Boardman, Jiesi Luo, Jinkyu Park, Yibing Qyang
PURPOSE OF REVIEW: The purpose of this review is to provide a broad overview of current trends in stem cell research and its applications in cardiovascular medicine. Researches on different stem cell sources, their inherent characteristics, and the limitations they have in medical applications are discussed. Additionally, uses of stem cells for both modeling and treating cardiovascular disease are discussed, taking note of the obstacles these engineered interventions must overcome to be clinically viable...
April 2017: Current Cardiology Reports
keyword
keyword
68191
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"