keyword
MENU ▼
Read by QxMD icon Read
search

cardiovascular tissue engineering

keyword
https://www.readbyqxmd.com/read/28811655/a-tissue-engineered-blood-vessel-model-of-hutchinson-gilford-progeria-syndrome-using-human-ipsc-derived-smooth-muscle-cells
#1
Leigh Atchison, Haoyue Zhang, Kan Cao, George A Truskey
Hutchison-Gilford Progeria Syndrome (HGPS) is a rare, accelerated aging disorder caused by nuclear accumulation of progerin, an altered form of the Lamin A gene. The primary cause of death is cardiovascular disease at about 14 years. Loss and dysfunction of smooth muscle cells (SMCs) in the vasculature may cause defects associated with HGPS. Due to limitations of 2D cell culture and mouse models, there is a need to develop improved models to discover novel therapeutics. To address this need, we produced a functional three-dimensional model of HGPS that replicates an arteriole-scale tissue engineered blood vessel (TEBV) using induced pluripotent stem cell (iPSC)-derived SMCs from an HGPS patient...
August 15, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28805830/in-vitro-and-in-vivo-analysis-of-visible-light-crosslinkable-gelatin-methacryloyl-gelma-hydrogels
#2
Iman Noshadi, Seonki Hong, Kelly E Sullivan, Ehsan Shirzaei Sani, Roberto Portillo-Lara, Ali Tamayol, Su Ryon Shin, Albert E Gao, Whitney L Stoppel, Lauren D Black Iii, Ali Khademhosseini, Nasim Annabi
Photocrosslinkable materials have been frequently used for constructing soft and biomimetic hydrogels for tissue engineering. Although ultraviolet (UV) light is commonly used for photocrosslinking such materials, its use has been associated with several biosafety concerns such as DNA damage, accelerated aging of tissues, and cancer. Here we report an injectable visible light crosslinked gelatin-based hydrogel for myocardium regeneration. Mechanical characterization revealed that the compressive moduli of the engineered hydrogels could be tuned in the range of 5-56 kPa by changing the concentrations of the initiator, co-initiator and co-monomer in the precursor formulation...
August 14, 2017: Biomaterials Science
https://www.readbyqxmd.com/read/28805140/a-rat-model-for-the-in-vivo-assessment-of-biological-and-tissue-engineered-valvular-and-vascular-grafts
#3
Yukiharu Sugimura, Anna Kathrin Schmidt, Artur Lichtenberg, Alexander Assmann, Payam Akhyari
The demand for an improvement of the biocompatibility and durability of vascular and valvular implants requires translational animal models to study the in vivo fate of cardiovascular grafts. In the present article, a review on the development and application of a microsurgical rat model of infrarenal implantation of aortic grafts and aortic valved conduits is provided. By refinement of surgical techniques and inclusion of hemodynamic considerations, a functional model has been created, which provides a modular platform for the in vivo assessment of biological and tissue-engineered grafts...
August 12, 2017: Tissue Engineering. Part C, Methods
https://www.readbyqxmd.com/read/28780562/rationale-and-design-of-a-multicentre-prospective-randomised-controlled-clinical-trial-to-evaluate-the-efficacy-of-the-adipose-graft-transposition-procedure-in-patients-with-a-myocardial-scar-the-agtp-ii-trial
#4
Paloma Gastelurrutia, Carolina Gálvez-Montón, Maria Luisa Cámara, Juan Bustamante-Munguira, Pablo García-Pavia, Pablo Avanzas, J Alberto San Román, Domingo Pascual-Figal, Eduardo de Teresa, Maria G Crespo-Leiro, Nicolás Manito, Julio Núñez, Francisco Fernández-Avilés, Ángel Caballero, Albert Teis, Josep Lupón, Ramón Brugada, Carlos Martín, Jacobo Silva, Ana Revilla-Orodea, Sergio J Cánovas, Jose M Melero, Jose J Cuenca-Castillo, Angel Gonzalez-Pinto, Antoni Bayes-Genis
INTRODUCTION: Cardiac adipose tissue is a source of progenitor cells with regenerative capacity. Studies in rodents demonstrated that the intramyocardial delivery of cells derived from this tissue improves cardiac function after myocardial infarction (MI). We developed a new reparative approach for damaged myocardium that integrates the regenerative properties of cardiac adipose tissue with tissue engineering. In the adipose graft transposition procedure (AGTP), we dissect a vascularised flap of autologous pericardial adipose tissue and position it over the myocardial scarred area...
August 4, 2017: BMJ Open
https://www.readbyqxmd.com/read/28772272/vascularized-cardiac-spheroids-as-novel-3d-in-vitro-models-to-study-cardiac-fibrosis
#5
Gemma A Figtree, Kristen J Bubb, Owen Tang, Eddy Kizana, Carmine Gentile
Spheroid cultures are among the most explored cellular biomaterials used in cardiovascular research, due to their improved integration of biochemical and physiological features of the heart in a defined architectural three-dimensional microenvironment when compared to monolayer cultures. To further explore the potential use of spheroid cultures for research, we engineered a novel in vitro model of the heart with vascularized cardiac spheroids (VCSs), by coculturing cardiac myocytes, endothelial cells, and fibroblasts isolated from dissociated rat neonatal hearts (aged 1-3 days) in hanging drop cultures...
August 4, 2017: Cells, Tissues, Organs
https://www.readbyqxmd.com/read/28770811/fabrication-of-arbitrary-3d-components-in-cardiac-surgery-from-macro-micro-to-nanoscale
#6
Ranjith Kumar Kankala, Kai Zhu, Jun Li, Chun-Sheng Wang, Shi-Bin Wang, Ai-Zheng Chen
Fabrication of tissue-/organ-like structures at arbitrary geometries by mimicking the properties of the complex material offers enormous interest to the research and clinical applicability in cardiovascular diseases. Patient-specific, durable, and realistic three-dimensional (3D) cardiac models for anatomic consideration have been developed for education, pro-surgery planning, and intra-surgery guidance. In cardiac tissue engineering (TE), 3D printing technology is the most convenient and efficient microfabrication method to create biomimetic cardiovascular tissue for the potential in vivo implantation...
August 3, 2017: Biofabrication
https://www.readbyqxmd.com/read/28754174/rnai-therapy-to-the-wall-of-arteries-and-veins-anatomical-physiologic-and-pharmacological-considerations
#7
REVIEW
Christoph S Nabzdyk, Leena Pradhan-Nabzdyk, Frank W LoGerfo
BACKGROUND: Cardiovascular disease remains a major health care challenge. The knowledge about the underlying mechanisms of the respective vascular disease etiologies has greatly expanded over the last decades. This includes the contribution of microRNAs, endogenous non-coding RNA molecules, known to vastly influence gene expression. In addition, short interference RNA has been established as a mechanism to temporarily affect gene expression. This review discusses challenges relating to the design of a RNA interference therapy strategy for the modulation of vascular disease...
July 28, 2017: Journal of Translational Medicine
https://www.readbyqxmd.com/read/28751369/wearable-technology-for-compensatory-reserve-to-sense-hypovolemia
#8
Victor A Convertino, Michael N Sawka
Traditional monitoring technologies fail to provide accurate or early indications of hypovolemia-mediated extremis because physiological systems (as measured by vital signs) effectively compensate until circulatory failure occurs. Hypovolemia is the most life-threatening physiological condition associated with circulatory shock in hemorrhage or sepsis, and it impairs one's ability to sustain physical exertion during heat stress. This review focuses on the physiology underlying the development of a novel non-invasive wearable technology that allows for real-time evaluation of the cardiovascular system's ability to compensate to hypovolemia, or its compensatory reserve, which provides an individualized estimate of impending circulatory collapse...
July 27, 2017: Journal of Applied Physiology
https://www.readbyqxmd.com/read/28734899/strategies-to-develop-endogenous-stem-cell-recruiting-bioactive-materials-for-tissue-repair-and-regeneration
#9
Settimio Pacelli, Sayantani Basu, Jonathan Whitlow, Aparna R Chakravarti, Francisca Acosta, Arushi Varshney, Saman Modaresi, Cory Berkland, Arghya Paul
A leading strategy in tissue engineering is the design of biomimetic scaffolds that stimulate the body's repair mechanisms through the recruitment of endogenous stem cells to sites of injury. Approaches that employ the use of chemoattractant gradients to guide tissue regeneration without external cell sources are favored over traditional cell-based therapies that have limited potential for clinical translation. Following this concept, bioactive scaffolds can be engineered to provide a temporally and spatially controlled release of biological cues, with the possibility to mimic the complex signaling patterns of endogenous tissue regeneration...
July 19, 2017: Advanced Drug Delivery Reviews
https://www.readbyqxmd.com/read/28726917/engineering-micromyocardium-to-delineate-cellular-and-extracellular-regulation-of-myocardial-tissue-contractility
#10
Nethika R Ariyasinghe, Caitlin H Reck, Alyssa A Viscio, Andrew P Petersen, Davi M Lyra-Leite, Nathan Cho, Megan L McCain
Cardiovascular diseases are a leading cause of death, in part due to limitations of existing models of the myocardium. Myocardium consists of aligned, contractile cardiac myocytes interspersed with fibroblasts that synthesize extracellular matrix (ECM). The cellular demographics and biochemical and mechanical properties of the ECM remodel in many different cardiac diseases. However, the impact of diverse cellular and extracellular remodeling on the contractile output of the myocardium are poorly understood...
July 20, 2017: Integrative Biology: Quantitative Biosciences From Nano to Macro
https://www.readbyqxmd.com/read/28715029/anisotropic-microfibrous-scaffolds-enhance-the-organization-and-function-of-cardiomyocytes-derived-from-induced-pluripotent-stem-cells
#11
Maureen Wanjare, Luqia Hou, Karina H Nakayama, Joseph J Kim, Nicholas P Mezak, Oscar J Abilez, Evangeline Tzatzalos, Joseph C Wu, Ngan F Huang
Engineering of myocardial tissue constructs is a promising approach for treatment of coronary heart disease. To engineer myocardial tissues that better mimic the highly ordered physiological arrangement and function of native cardiomyocytes, we generated electrospun microfibrous polycaprolactone scaffolds with either randomly oriented (14 μm fiber diameter) or parallel-aligned (7 μm fiber diameter) microfiber arrangement and co-seeded the scaffolds with human induced pluripotent stem cell-derived cardiomyocytes (iCMs) and endothelial cells (iECs) for up to 12 days after iCM seeding...
July 25, 2017: Biomaterials Science
https://www.readbyqxmd.com/read/28690099/electrospun-polymeric-nanofibers-new-horizons-in-drug-delivery
#12
REVIEW
Shreya Thakkar, Manju Misra
Nanofibers obtained using electrospinning technique are being used since ages especially in fields of textile industry, sensors, filters, protective clothing and tissue engineering. Their use as drug delivery system is an emerging platform in the field of pharmaceuticals and now-a-days formulation scientists are paying great attention to the technology due to several advantages prime being easy modulation of drug release profile depending upon the properties of polymer/polymeric blends/other materials used...
July 8, 2017: European Journal of Pharmaceutical Sciences
https://www.readbyqxmd.com/read/28651145/polymer-structure-property-requirements-for-stereolithographic-3d-printing-of-soft-tissue-engineering-scaffolds
#13
REVIEW
Ryan J Mondschein, Akanksha Kanitkar, Christopher B Williams, Scott S Verbridge, Timothy E Long
This review highlights the synthesis, properties, and advanced applications of synthetic and natural polymers 3D printed using stereolithography for soft tissue engineering applications. Soft tissue scaffolds are of great interest due to the number of musculoskeletal, cardiovascular, and connective tissue injuries and replacements humans face each year. Accurately replacing or repairing these tissues is challenging due to the variation in size, shape, and strength of different types of soft tissue. With advancing processing techniques such as stereolithography, control of scaffold resolution down to the μm scale is achievable along with the ability to customize each fabricated scaffold to match the targeted replacement tissue...
June 6, 2017: Biomaterials
https://www.readbyqxmd.com/read/28649865/dental-stem-cells-recent-progresses-in-tissue-engineering-and-regenerative-medicine
#14
João Botelho, Maria Alzira Cavacas, Vanessa Machado, José João Mendes
Since the disclosure of adult mesenchymal stem cells (MSCs) there have been an intense investigation on the characteristics of these cells and their potentialities. Dental Stem Cells (DSCs) are MSC-like populations with self-renewal capacity and multidifferentiation potential. Currently, there are five main DSCs, dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHED), stem cells from apical papilla (SCAP), periodontal ligament stem cells (PDLSCs), and Dental Follicle Precursor Cells (DFPCs)...
June 24, 2017: Annals of Medicine
https://www.readbyqxmd.com/read/28648749/transcriptome-profiling-of-3d-co-cultured-cardiomyocytes-and-endothelial-cells-under-oxidative-stress-using-a-photocrosslinkable-hydrogel-system
#15
Xiaoshan Yue, Aylin Acun, Pinar Zorlutuna
Myocardial infarction (MI) is one of the most common among cardiovascular diseases. Endothelial cells (ECs) are considered to have protective effects on cardiomyocytes (CMs) under stress conditions such as MI; however, the paracrine CM-EC crosstalk and the resulting endogenous cellular responses that could contribute to this protective effect are not thoroughly investigated. Here we created biomimetic synthetic tissues containing CMs and human induced pluripotent stem cell (hiPSC)-derived ECs (iECs), which showed improved cell survival compared to single cultures under conditions mimicking the aftermath of MI, and performed high-throughput RNA-sequencing to identify target pathways that could govern CM-iEC crosstalk and the resulting improvement in cell viability...
June 23, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28642016/electrospun-vascular-scaffold-for-cellularized-small-diameter-blood-vessels-a-preclinical-large-animal-study
#16
Young Min Ju, Hyunhee Ahn, Juan Arenas-Herrera, Cheil Kim, Mehran Abolbashari, Anthony Atala, James J Yoo, Sang Jin Lee
The strategy of vascular tissue engineering is to create a vascular substitute by combining autologous vascular cells with a tubular-shaped biodegradable scaffold. We have previously developed a novel electrospun bilayered vascular scaffold that provides proper biological and biomechanical properties as well as structural configuration. In this study, we investigated the clinical feasibility of a cellularized vascular scaffold in a preclinical large animal model. We fabricated the cellularized vascular construct with autologous endothelial progenitor cell (EPC)-derived endothelial cells (ECs) and smooth muscle cells (SMCs) followed by a pulsatile bioreactor preconditioning...
September 1, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28629892/engineered-myocardium-model-to-study-the-roles-of-hif-1%C3%AE-and-hif1a-as1-in-paracrine-only-signaling-under-pathological-level-oxidative-stress
#17
Aylin Acun, Pinar Zorlutuna
Studying heart tissue is critical for understanding and developing treatments for cardiovascular diseases. In this work, we fabricated precisely controlled and biomimetic engineered model tissues to study how cell-cell and cell-matrix interactions influence myocardial cell survival upon exposure to pathological level oxidative stress. Specifically, the interactions of endothelial cells (ECs) and cardiomyocytes (CMs), and the role of hypoxia inducible factor-1α (HIF-1α), with its novel alternative regulator, HIF-1α antisense RNA1 (HIF1A-AS1), in these interactions were investigated...
June 16, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28585210/adiponectin-resistance-in-obesity
#18
Atilla Engin
The decrease in adiponectin levels are negatively correlated with chronic subclinical inflammation markers in obesity. The hypertrophic adipocytes cause obesity-linked insulin resistance and metabolic syndrome. Furthermore, macrophage polarization is a key determinant regulating adiponectin receptor (AdipoR1/R2) expression and differential adiponectin-mediated macrophage inflammatory responses in obese individuals. In addition to decrease in adiponectin concentrations, the decline in AdipoR1/R2 mRNA expression leads to a decrement in adiponectin binding to cell membrane, and this turns into attenuation in the adiponectin effects...
2017: Advances in Experimental Medicine and Biology
https://www.readbyqxmd.com/read/28526928/exosomes-in-cardiovascular-medicine
#19
REVIEW
Iain M Dykes
Exosomes are small, extracellular membrane-bound particles that mediate intercellular transport of a cytosolic cargo. Exosomal transfer of micro-RNA can modify gene expression in targeted cells. Exosome-based endocrine/paracrine signaling has been shown to be involved in a wide range of physiological processes including those associated with cardiovascular injury and disease, but remains relatively poorly understood. Exosomes offer great potential to the clinical field, with applications in both diagnostics and therapeutics...
May 19, 2017: Cardiology and Therapy
https://www.readbyqxmd.com/read/28516795/a-comprehensive-guide-to-telocytes-and-their-great-potential-in-cardiovascular-system
#20
REVIEW
I Kucybala, P Janas, S Ciuk, W Cholopiak, W Klimek-Piotrowska, M K Holda
Telocytes, a recently discovered type of interstitial cells, have a very distinctive morphology - the small cell body with long extensions, named telopodes. In our review, apart from introducing general aspects of telocytes, we focus on properties, functions and future potential of those cells in cardiovascular system. However, physiological functions of telocytes in cardiovascular system are still regarded as quite enigmatic. Previous studies claim that they play a role in organogenesis and regeneration, bioelectrical signalling, mechanoelectrical coupling, anti-oxidative protection, angiogenesis and regulation of blood flow...
2017: Bratislavské Lekárske Listy
keyword
keyword
68191
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"