Read by QxMD icon Read

Comparative plastomics

Takeshi Takamatsu, Marouane Baslam, Takuya Inomata, Kazusato Oikawa, Kimiko Itoh, Takayuki Ohnishi, Tetsu Kinoshita, Toshiaki Mitsui
Chloroplasts, which perform photosynthesis, are one of the most important organelles in green plants and algae. Chloroplasts maintain an independent genome that includes important genes encoding their photosynthetic machinery and various housekeeping functions. Owing to its non-recombinant nature, low mutation rates, and uniparental inheritance, the chloroplast genome (plastome) can give insights into plant evolution and ecology and in the development of biotechnological and breeding applications. However, efficient methods to obtain high-quality chloroplast DNA (cpDNA) are currently not available, impeding powerful sequencing and further functional genomics research...
2018: Frontiers in Plant Science
Brandon T Sinn, Dylan D Sedmak, Lawrence M Kelly, John V Freudenstein
PREMISE OF THE STUDY: As more plastomes are assembled, it is evident that rearrangements, losses, intergenic spacer expansion and contraction, and syntenic breaks within otherwise functioning plastids are more common than was thought previously, and such changes have developed independently in disparate lineages. However, to date, the magnoliids remain characterized by their highly conserved plastid genomes (plastomes). METHODS: Illumina HiSeq and MiSeq platforms were used to sequence the plastomes of Saruma henryi and those of representative species from each of the six taxonomic sections of Asarum...
January 2018: American Journal of Botany
Mira Park, Hyun Park, Hyoungseok Lee, Byeong-Ha Lee, Jungeun Lee
Organellar genomes of bryophytes are poorly represented with chloroplast genomes of only four mosses, four liverworts and two hornworts having been sequenced and annotated. Moreover, while Antarctic vegetation is dominated by the bryophytes, there are few reports on the plastid genomes for the Antarctic bryophytes. Sanionia uncinata (Hedw.) Loeske is one of the most dominant moss species in the maritime Antarctic. It has been researched as an important marker for ecological studies and as an extremophile plant for studies on stress tolerance...
March 1, 2018: International Journal of Molecular Sciences
Malte Mader, Birte Pakull, Céline Blanc-Jolivet, Maike Paulini-Drewes, Zoéwindé Henri-Noël Bouda, Bernd Degen, Ian Small, Birgit Kersten
The Meliaceae family mainly consists of trees and shrubs with a pantropical distribution. In this study, the complete chloroplast genomes of four Meliaceae species were sequenced and compared with each other and with the previously published Azadirachta indica plastome. The five plastomes are circular and exhibit a quadripartite structure with high conservation of gene content and order. They include 130 genes encoding 85 proteins, 37 tRNAs and 8 rRNAs. Inverted repeat expansion resulted in a duplication of rps19 in the five Meliaceae species, which is consistent with that in many other Sapindales, but different from many other rosids...
March 1, 2018: International Journal of Molecular Sciences
Yin-Huan Wang, Susann Wicke, Hong Wang, Jian-Jun Jin, Si-Yun Chen, Shu-Dong Zhang, De-Zhu Li, Ting-Shuang Yi
The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome (plastome) diversification across the subfamily unaddressed, and phylogenetic relationships within this clade remained unresolved. Here, we assembled eight plastomes from seven Cercidoideae genera and conducted phylogenomic-comparative analyses in a broad evolutionary framework across legumes...
2018: Frontiers in Plant Science
Daniel C Frailey, Srinivasa R Chaluvadi, Justin N Vaughn, Caroline G Coatney, Jeffrey L Bennetzen
BACKGROUND: The chloroplast genomes (plastome) of most plants are highly conserved in structure, gene content, and gene order. Parasitic plants, including those that are fully photosynthetic, often contain plastome rearrangements. These most notably include gene deletions that result in a smaller plastome size. The nature of gene loss and genome structural rearrangement has been investigated in several parasitic plants, but their timing and contributions to the adaptation of these parasites requires further investigation, especially among the under-studied hemi-parasites...
February 6, 2018: BMC Plant Biology
Anthony Ndiripo, Andreas Albrecht, Benjamin Monrabal, Jingbo Wang, Harald Pasch
Olefin plastomers/elastomers are typically copolymers with high comonomer contents and low crystallinities. Therefore, the fractionation of these materials with crystallization-based methods is not feasible. On the other hand, solvent and temperature gradient interaction chromatography (SGIC and TGIC, respectively) are suitable techniques for the separation of olefin copolymers with regard to their chemical composition. In this study, the application ranges of both techniques are investigated and compared for ethylene-propylene (EP) copolymers...
January 15, 2018: Macromolecular Rapid Communications
Maria D Logacheva, Anastasiya A Krinitsina, Maxim S Belenikin, Kamil Khafizov, Evgenii A Konorov, Sergey V Kuptsov, Anna S Speranskaya
BACKGROUND: Ferns are large and underexplored group of vascular plants (~ 11 thousands species). The genomic data available by now include low coverage nuclear genomes sequences and partial sequences of mitochondrial genomes for six species and several plastid genomes. RESULTS: We characterized plastid genomes of three species of Dryopteris, which is one of the largest fern genera, using sequencing of chloroplast DNA enriched samples and performed comparative analysis with available plastomes of Polypodiales, the most species-rich group of ferns...
December 28, 2017: BMC Plant Biology
Chao-Nan Fu, Hong-Tao Li, Richard Milne, Ting Zhang, Peng-Fei Ma, Jing Yang, De-Zhu Li, Lian-Ming Gao
BACKGROUND: The Cornales is the basal lineage of the asterids, the largest angiosperm clade. Phylogenetic relationships within the order were previously not fully resolved. Fifteen plastid genomes representing 14 species, ten genera and seven families of Cornales were newly sequenced for comparative analyses of genome features, evolution, and phylogenomics based on different partitioning schemes and filtering strategies. RESULTS: All plastomes of the 14 Cornales species had the typical quadripartite structure with a genome size ranging from 156,567 bp to 158,715 bp, which included two inverted repeats (25,859-26,451 bp) separated by a large single-copy region (86,089-87,835 bp) and a small single-copy region (18,250-18,856 bp) region...
December 8, 2017: BMC Genomics
Rubén Sancho, Carlos P Cantalapiedra, Diana López-Alvarez, Sean P Gordon, John P Vogel, Pilar Catalán, Bruno Contreras-Moreira
Few pan-genomic studies have been conducted in plants, and none of them have focused on the intraspecific diversity and evolution of their plastid genomes. We address this issue in Brachypodium distachyon and its close relatives B. stacei and B. hybridum, for which a large genomic data set has been compiled. We analyze inter- and intraspecific plastid comparative genomics and phylogenomic relationships within a family-wide framework. Major indel differences were detected between Brachypodium plastomes. Within B...
December 5, 2017: New Phytologist
Céline Van de Paer, Olivier Bouchez, Guillaume Besnard
The mitogenome is rarely used to reconstruct the evolutionary history of plants, contrary to nuclear and plastid markers. Here, we evaluate the usefulness of mitochondrial DNA for molecular evolutionary studies in Oleaceae, in which cases of cytoplasmic male sterility (CMS) and of potentially contrasted organelle inheritance are known. We compare the diversity and the evolution of mitochondrial and chloroplast genomes by focusing on the olive complex and related genera. Using high-throughput techniques, we reconstructed complete mitogenomes (ca...
November 24, 2017: Molecular Ecology Resources
Hyoung Tae Kim, Mark W Chase
In this paper, we compare ndh genes in the plastid genome of many Cymbidium species and three closely related taxa in Orchidaceae looking for evidence of ndh gene degradation. Among the 11 ndh genes, there were frequently large deletions in directly repeated or AT-rich regions. Variation in these degraded ndh genes occurs between individual plants, apparently at population levels in these Cymbidium species. It is likely that ndh gene transfers from the plastome to mitochondrial genome (chondriome) occurred independently in Orchidaceae and that ndh genes in the chondriome were also relatively recently transferred between distantly related species in Orchidaceae...
2017: PloS One
Péter Poczai, Jaakko Hyvönen
Spanish moss (Tillandsia usneoides) is an epiphytic bromeliad widely distributed throughout tropical and warm temperate America. This plant is highly adapted to extreme environmental conditions. Striking features of this species include specialized trichomes (scales) covering the surface of its shoots aiding the absorption of water and nutrients directly from the atmosphere and a specific photosynthesis using crassulacean acid metabolism (CAM). Here we report the plastid genome of Spanish moss and present the comparison of genome organization and sequence evolution within Poales...
2017: PloS One
Zhitao Niu, Jiajia Pan, Shuying Zhu, Ludan Li, Qingyun Xue, Wei Liu, Xiaoyu Ding
Apostasioideae, consists of only two genera, Apostasia and Neuwiedia, which are mainly distributed in Southeast Asia and northern Australia. The floral structure, taxonomy, biogeography, and genome variation of Apostasioideae have been intensively studied. However, detailed analyses of plastome composition and structure and comparisons with those of other orchid subfamilies have not yet been conducted. Here, the complete plastome sequences of Apostasia wallichii and Neuwiedia singapureana were sequenced and compared with 43 previously published photosynthetic orchid plastomes to characterize the plastome structure and evolution in the orchids...
2017: Frontiers in Plant Science
Chung-Shien Wu, Ting-Jen Wang, Chia-Wen Wu, Ya-Nan Wang, Shu-Miaw Chaw
To date, little is known about the evolution of plastid genomes (plastomes) in Lauraceae. As one of the top five largest families in tropical forests, the Lauraceae contain many species that are important ecologically and economically. Lauraceous species also provide wonderful materials to study the evolutionary trajectory in response to parasitism because they contain both non-parasitic and parasitic species. This study compared the plastomes of nine Lauraceous species, including the sole hemiparasitic and herbaceous genus Cassytha (laurel dodder; here represented by Cas...
September 6, 2017: Genome Biology and Evolution
Yu Song, Wen-Bin Yu, Yunhong Tan, Bing Liu, Xin Yao, Jianjun Jin, Michael Padmanaba, Jun-Bo Yang, Richard T Corlett
Available plastomes of the Lauraceae show similar structure and varied size, but there has been no systematic comparison across the family. In order to understand the variation in plastome size and structure in the Lauraceae and related families of magnoliids, we here compare 47 plastomes, 15 newly sequenced, from 27 representative genera. We reveal that the two shortest plastomes are in the parasitic Lauraceae genus Cassytha, with lengths of 114,623 (C. filiformis) and 114,963 bp (C. capillaris), and that they have lost NADH dehydrogenase (ndh) genes in the large single-copy region and one entire copy of the inverted repeat (IR) region...
September 1, 2017: Genome Biology and Evolution
Björn Grübler, Livia Merendino, Sven O Twardziok, Morgane Mininno, Guillaume Allorent, Fabien Chevalier, Monique Liebers, Robert Blanvillain, Klaus F X Mayer, Silva Lerbs-Mache, Stéphane Ravanel, Thomas Pfannschmidt
Plants possessing dysfunctional plastids due to defects in pigment biosynthesis or translation are known to repress photosynthesis-associated nuclear genes via retrograde signals from the disturbed organelles toward the nucleus. These signals are thought to be essential for proper biogenesis and function of the plastid. Mutants lacking plastid-encoded RNA polymerase-associated proteins (PAPs) display a genetic arrest in eoplast-chloroplast transition leading to an albino phenotype in the light. Retrograde signaling in these mutants, therefore, could be expected to be similar as under conditions inducing plastid dysfunction...
November 2017: Plant Physiology
Weishu Fan, Wenhu Guo, James L Van Etten, Jeffrey P Mower
Ancient endosymbiotic relationships have led to extreme genomic reduction in many bacterial and eukaryotic algal endosymbionts. Endosymbionts in more recent and/or facultative relationships can also experience genomic reduction to a lesser extent, but little is known about the effects of the endosymbiotic transition on the organellar genomes of eukaryotes. To understand how the endosymbiotic lifestyle has affected the organellar genomes of photosynthetic green algae, we generated the complete plastid genome (plastome) and mitochondrial genome (mitogenome) sequences from three green algal endosymbionts (Chlorella heliozoae, Chlorella variabilis and Micractinium conductrix)...
August 30, 2017: Scientific Reports
Kyeong-Sik Cheon, Kyung-Ah Kim, Ki-Oug Yoo
We report the complete chloroplast genomes of three Adenophora species, and analyzed these compared them to five published Campanuloid plastomes. The total genome length of Adenophora divaricata, Adenophora erecta, and Adenophora stricta ranged from 159,759 to 176,331 bp. Among the eight Campanuloid species, many inversions were found to be only in the LSC region. IR contraction was also identified in the plastid genome of Adenophora stricta. Phylogenetic analyses based on 76 protein coding genes showed that Campanuloids are monophyletic, and are composed of two major groups: Campanula s...
2017: PloS One
Gurusamy Raman, Veronica Park, Myounghai Kwak, Byoungyoon Lee, SeonJoo Park
Arabis stellari var. japonica is an ornamental plant of the Brassicaceae family, and is widely distributed in South Korea. However, no information is available about its molecular biology and no genomic study has been performed on A. stellari. In this paper, the authors report the complete chloroplast genome sequence of A. stellari. The plastome of A. stellari was 153,683 bp in length with 36.4% GC and included a pair of inverted repeats (IRs) of 26,423 bp that separated a large single-copy (LSC) region of 82,807 bp and a small single-copy (SSC) region of 18,030 bp...
2017: PloS One
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"