Read by QxMD icon Read


Péter Tamás, Eszter Hantosi, Bálint Farkas, Zsolt Ifi, József Betlehem, József Bódis
OBJECTIVE: To examine the effect of furosemide on hypertension and edema in patients with pre-eclampsia experiencing high cardiac output. METHODS: The present cohort study enrolled patients with pre-eclampsia who were admitted to the pregnancy pathology unit of the Department of Obstetrics and Gynecology, University of Pécs, Hungary, between January 1 and December 31, 2015. Eligible patients had singleton pregnancies with no fetal anomalies, high blood volume, visible edema, and a hematocrit concentration below 37 L/L...
January 2017: International Journal of Gynaecology and Obstetrics
Hang-Ah Park, Siyuan Liu, Youngseok Oh, Paul A Salvador, Gregory S Rohrer, Mohammad F Islam
Photoelectrochemical conversion of solar energy is explored for many diverse applications but suffers from poor efficiencies due to limited solar absorption, inadequate charge carrier separation, redox half-reactions occurring in close proximity, and/or long ion diffusion lengths. We have taken a drastically different approach to the design of photoelectrochemical cells (PECs) to spatially isolate reaction sites at the nanoscale to different materials and flow channels, suppressing carrier recombination and back-reaction of intermediates while shortening ion diffusion paths and, importantly, avoiding mixed product generation...
January 17, 2017: ACS Nano
Shan Xie, Ke Ouyang, Yueming Lao, Peihao He, Qun Wang
A series of heterostructured ZnFe2O4/TiO2-nanotube arrays (NTAs) with remarkable visible-light photoelectrocatalytic (PEC) activity were successfully prepared via a two-step process of anodization and impregnation, followed by annealing. The structure and morphology of the as-prepared ZnFe2O4/TiO2-NTAs samples, PEC degradation abilities and photoelectrochemical performances, as well as long-term stabilities toward degradation of methyl orange (MO) solution under visible-light irradiation were deeply investigated...
January 7, 2017: Journal of Colloid and Interface Science
B Wickman, A Bastos Fanta, A Burrows, A Hellman, J B Wagner, B Iandolo
Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes considerably. Herein, we present hematite thin films fabricated via one-step oxidation of Fe by rapid thermal processing (RTP). In particular, we investigate the effect of oxidation temperature on the PEC properties of hematite...
January 16, 2017: Scientific Reports
Helena Franquet-Griell, Deborah Cornadó, Josep Caixach, Francesc Ventura, Silvia Lacorte
The number of cytostatic drugs used in cancer treatments is wide and increases every year; therefore, tools have been developed to predict their concentration in the environment to prioritize those for monitoring studies. In the present study, the predicted environmental concentrations (PECs) were calculated according to consumption data in Catalonia (NE Spain) for 2014. According to PECs and to the most widely reported compounds, 19 cytostatics were monitored in two sampling campaigns performed along the Besòs River...
January 10, 2017: Environmental Science and Pollution Research International
Minwei Zhang, Chengyi Hou, Arnab Halder, Qijin Chi
Thanks to their versatile functionality, metal oxides (MOs) constitute one of the key family materials in a variety of current demands for sensor, catalysis, energy storage and conversion, optical electronics, and piezoelectric mechanics. Much effort has focused on engineering specific nanostructure and macroscopic morphology of MOs that aims to enhance their performances, but the design and controlled synthesis of ultrafine nanostructured MOs in a cost-effective and facile way remains a challenge. In this work, we have exploited the advantages of intrinsic structures of graphene oxide (GO) papers, serving as a sacrificial template, to design and synthesize two-dimensional (2D) layered and free-standing MO papers with ultrafine nanostructures...
January 19, 2017: ACS Applied Materials & Interfaces
Dominika Kulig, Anna Zimoch-Korzycka, Żaneta Król, Maciej Oziembłowski, Andrzej Jarmoluk
Meat is one of the most challenging food products in the context of maintaining quality and safety. The aim of this work was to improve the quality of raw/cooked meat by coating it with sodium alginate (A), chitosan (C), and sodium alginate-chitosan polyelectrolyte complex (PEC) hydrosols. Antioxidant properties of A, C, and PEC hydrosols were determined. Subsequently, total antioxidant capacity (TAC), sensory quality of raw/cooked pork coated with experimental hydrosols, and antimicrobial efficiency of those hydrosols on the surface microbiota were analysed...
January 6, 2017: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
Zhuo Zhang, Mingi Choi, Minki Baek, Zexiang Deng, Kijung Yong
Modern nanotechnology generates more stringent requirements for the design and synthetic strategy of nanostructural materials. In this work, we demonstrate a novel strategy for the synthesis of "corn silk"-like ZnO hierarchical nanostructures, simplified as ZnO corn silk: silk-like ZnO nanotubes (NTs) with a large length-to-diameter ratio are grown on the top tip of corn-shaped ZnO nanorods (NRs). The synthetic method is unique in that when the ZnO NRs are dipped into the aqueous solution of NaBH4, the release of Zn(2+) and OH(-) caused by the corrosion of ZnO NRs, as well as the subsequent growth of ZnO NTs, could allow the process to run step-by-step in self-assembly mode...
January 18, 2017: ACS Applied Materials & Interfaces
Stefan Mommer, Helmut Keul, Martin Möller
In this manuscript, a biscyclic monomer with an epoxide and a thiolactone ring connected by a urethane bond is used for the synthesis of amino acid-functional polyelectrolytes. In a first step, lithium salts of amino acids react selectively with the thiolactone ring by ring-opening, formation of an amide bond, and a thiol group. In a second step and in the presence of a base a polymeric building block is formed by polyaddition of the thiolate to the epoxide ring. The reaction occurs at room temperature in water as solvent...
January 9, 2017: Biomacromolecules
Thomas J G Chase, Joshua Luck, Lauren S Harris, Gareth Bashir
A 68-year-old male nursing home resident presented following dislodgement of a percutaneous endoscopic colostomy (PEC) tube originally sited to prevent recurrent sigmoid volvulus. Computed tomography demonstrated tube migration into the lumen of the recto-sigmoid junction, where it remained for 12 days before passing spontaneously. During this period, the patient remained asymptomatic; the residual colocutaneous fistula functioned as a decompressive valve. Originally, the patient was due to be discharged with early flexible sigmoidoscopy follow-up...
January 6, 2017: Journal of Surgical Case Reports
Xuehui Pang, Hongjun Bian, Weijie Wang, Cheng Liu, Malik Saddam Khan, Qiao Wang, Jianni Qi, Qin Wei, Bin Du
Herein, TiO2 nanopillars (NPs)/N-doped graphene quantum dots (N-GQDs)/g-C3N4 QDs heterojunction efficiently suppressed the photogenerated charges recombination and improved photo-to-current conversion efficiency. The introduced N-GQDs and g-C3N4 QDs could result in more effective separation of the photogenerated charges, and thus produce a further increase of the photocurrent. TiO2 NPs/N-GQDs/g-C3N4 QDs were firstly applied as the photoactive materials for the fabrication of the biosensors, and the primers of pcDNA3-HBV were then adsorbed on the TiO2 NPs/N-GQDs/g-C3N4 QDs modified electrode under the activation of EDC/NHS...
December 30, 2016: Biosensors & Bioelectronics
Meng-Yang Ye, Zhi-Hao Zhao, Zhuo-Feng Hu, Le-Quan Liu, Hui-Ming Ji, Zhu-Rui Shen, Tian-Yi Ma
0D/2D heterojunctions, especially quantum dots (QDs)/nanosheets (NSs) have attracted significant attention for use of photoexcited electrons/holes due to their high charge mobility. Herein, unprecedent heterojunctions of vanadate (AgVO3 , BiVO4 , InVO4 and CuV2 O6 ) QDs/graphitic carbon nitride (g-C3 N4 ) NSs exhibiting multiple unique advances beyond traditional 0D/2D composites have been developed. The photoactive contribution, up-conversion absorption, and nitrogen coordinating sites of g-C3 N4 NSs, highly dispersed vanadate nanocrystals, as well as the strong coupling and band alignment between them lead to superior visible-light-driven photoelectrochemical (PEC) and photocatalytic performance, competing with the best reported photocatalysts...
January 4, 2017: Angewandte Chemie
Farnaz Sadat Mirzazadeh Tekie, Melika Kiani, Amir Zakerian, Faezeh Pilevarian, Akram Assali, Masoud Soleimani, Rassoul Dinarvand, Ehsan Arefian, Amir Atashi, Mohsen Amini, Fatemeh Atyabi
Chitosan (Ch) nanoparticles have emerged as a promising vector for gene delivery, nonetheless slow dissociation rate of the nanoparticles in cytoplasm is a drawback of using Ch. Herein, the Ch-mediated gene delivery was improved using PECs of Ch and carboxymethyl dextran (CMD) to transfer the micro RNA-145 (miR-145). The optimized nano PEC preparation method and effects of Ch molecular weight (Mw) and a CMD to Ch molar ratio (CMD:Ch) on physical characteristics and in vitro efficacy of the nano PECs was determined...
March 1, 2017: Carbohydrate Polymers
Yuan-Cheng Zhu, Fei Xu, Nan Zhang, Wei-Wei Zhao, Jing-Juan Xu, Hong-Yuan Chen
This work reports the use of compositionally heterogeneous asymmetric Ag@Au core-satellite nanoassembly functionalized with DNA sequence as unique signaling nanoprobes for the realization of new energy-transfer-based photoelectrochemical (PEC) immunoassay of prostate- specific antigen (PSA). Specifically, the Ag@Au asymmetric core-satellite nanoassemblies (Ag@Au ACS) were fabricated on a two-dimensional glass substrate by a modified controlled assembly technique, and then functionalized with DNA sequences containing PSA aptamers as signaling nanoprobes...
December 20, 2016: Biosensors & Bioelectronics
Jingyuan Liu, Takashi Hisatomi, Dharmapura H K Murthy, Miao Zhong, Mamiko Nakabayashi, Tomohiro Higashi, Yohichi Suzuki, Hiroyuki Matsuzaki, Kazuhiko Seki, Akihiro Furube, Naoya Shibata, Masao Katayama, Tsutomu Minegishi, Kazunari Domen
Particulate La5Ti2CuS5O7 (LTC) photocathodes prepared by particle transfer show a positive onset potential of 0.9 V vs RHE for the photocathodic current in photoelectrochemical (PEC) H2 evolution. However, the low photocathodic current imposes a ceiling on the solar-to-hydrogen energy conversion efficiency of PEC cells based on LTC photocathodes. To improve the photocurrent, in this work, the surface of Mg-doped LTC photocathodes was modified with TiO2, Nb2O5, and Ta2O5 by radio frequency reactive magnetron sputtering...
January 19, 2017: Journal of Physical Chemistry Letters
A Khan, M I Ahmed, A Adam, A-M Azad, M Qamar
Incorporation of foreign moiety in the lattice of semiconductors significantly alters their optoelectronic behavior and opens a plethora of new applications. In this paper, we report the synthesis of sulfur-doped zinc oxide (S-doped ZnO) nanorods by reacting ZnO nanorods with diammonium sulfide in vapor phase. Microscopic investigation revealed that the morphological features, such as, the length (2-4 μm) and width (100-250 nm) of the original hexagonal ZnO nanorods remained intact post-sulfidation. X-ray photoelectron spectroscopy analysis of the sulfide sample confirmed the incorporation of sulfur into ZnO lattice...
February 3, 2017: Nanotechnology
Shabeeb Hussain, Shazia Hussain, Aashir Waleed, Mohammad Mahdi Tavakoli, Zilong Wang, Shihe Yang, Zhiyong Fan, Muhammad Arif Nadeem
Recently, photoelectrochemical conversion (PEC) of water into fuel is attracting great attention of researchers due to its outstanding benefits. Herein, a systematic study on PEC of water using CuFe2O4/ α-Fe2O3 composite thin films is presented. CuFe2O4/ α-Fe2O3 composite thin films were deposited on two different substrates; (1) planner FTO glass and (2) 3-dimensional nanospike (NSP). The films on both substrates were characterized and tested as anode material for photoelectrochemical water splitting reaction...
December 28, 2016: ACS Applied Materials & Interfaces
Weijian Chen, Taotao Wang, Jiawei Xue, Shikuo Li, Zidan Wang, Song Sun
TiO2 -based photoanodes have attracted extensive attention worldwide for photoelectrochemical (PEC) water splitting, but these materials still suffer from poor electron-hole separation and low photoconversion efficiency. Here, the high PEC water splitting activity and long-term stability against photocorrosion of well-aligned hierarchical TiO2 @CoNi-layered double hydroxides nanotube arrays (TiO2 @CoNi-LDHs NTAs) are reported. The typical TiO2 @CoNi-LDHs NTAs exhibits enhancing photocurrent density of 4.4 mA cm(-2) at a potential of 1...
December 27, 2016: Small
Yu-Xiang Dong, Jun-Tao Cao, Yan-Ming Liu, Shu-Hui Ma
Herein, a novel photoelectrochemical (PEC) immunosensing platform for highly sensitive detection of prostate specific antigen (PSA) was constructed based on dual-quenching of photocurrent from CdSe sensitized TiO2 electrode by gold nanoparticles decorated dopamine-melanin nanospheres (AuNPs-Dpa-melanin CNSs). In this proposal, CdSe sensitized TiO2 was used as photoelectrochemical matrix and the functional AuNPs-Dpa-melanin CNSs were used as signal quenching element. The dual quenching of the gold nanoparticles decorated Dpa-melanin CNSs to the CdSe sensitized TiO2 was achieved as follows: (i) the strong energy transfer between the CdSe quantum dots (QDs) and Au NPs diminishes the photocurrent signal of CdSe QDs; (ii) the steric hindrance of AuNPs-Dpa-melanin CNSs partly obstructs the diffusion of the electron donor, i...
December 18, 2016: Biosensors & Bioelectronics
Yi Yu, De Chang, Huiwen Xu, Xuelin Zhang, Lei Pan, Chou Xu, Bing Huang, Hong Zhou, Jia Li, Jun Guo, Changting Liu
Streptococcus pneumoniae is one of the most frequent opportunistic pathogens worldwide. DNA processing protein A (DprA) is an important factor involved in bacterial uptake and DNA integration into bacterial genome, but its role in S. pneumoniae virulence remains unclear. The aim of this study was to characterize the effects of the pneumococcal dprA gene on the pathogenesis of S. pneumoniae. To construct a dprA-deficient pneumococcal strain, the dprA gene of the S. pneumoniae strain D39 was inactivated. The virulence of this dprA-deficient strain, designated ΔD39, was compared with that of the wild-type strain by evaluating their respective capabilities to adhere to human pulmonary epithelial cells (PEC-A549) and by analyzing their choline-binding protein expression levels...
December 6, 2016: Brazilian Journal of Microbiology: [publication of the Brazilian Society for Microbiology]
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"