Read by QxMD icon Read

spinal cord regeneration

Katelyn N Benthall, Ryan A Hough, Andrew D McClellan
Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI...
October 19, 2016: Journal of Neurophysiology
Rachelle T Hassarati, L John R Foster, Rylie A Green
The recent success of olfactory ensheathing cell (OEC) assisted regeneration of injured spinal cord has seen a rising interest in the use of these cells in tissue-engineered systems. Previously shown to support neural cell growth through glial scar tissue, OECs have the potential to assist neural network formation in living electrode systems to produce superior neuroprosthetic electrode surfaces. The following study sought to understand the influence of biphasic electrical stimulation (ES), inherent to bionic devices, on cell survival and function, with respect to conventional metallic and developmental conductive hydrogel (CH) coated electrodes...
2016: Frontiers in Neuroscience
Alexander C Whiting, Jay D Turner
No abstract text is available yet for this article.
October 13, 2016: World Neurosurgery
Thomas Broggini, Lisa Schnell, Ali Ghoochani, José María Mateos, Michael Buchfelder, Kurt Wiendieck, Michael K Schäfer, Ilker Y Eyupoglu, Nicolai E Savaskan
The Plasticity Related Gene family covers five, brain-specific, transmembrane proteins (PRG1-5, also termed LPPR1-5) that operate in neuronal plasticity during development, aging and brain trauma. Here we investigated the role of the PRG family on axonal and filopodia outgrowth. Comparative analysis revealed the strongest outgrowth induced by PRG3 (LPPR1). During development, PRG3 is ubiquitously located at the tip of neuronal processes and at the plasma membrane and declines with age. In utero electroporation of PRG3 induced dendritic protrusions and accelerated spine formations in cortical pyramidal neurons...
October 15, 2016: Aging
Mohammad T Abu-Rub, Ben Newland, Michelle Naughton, Wenxin Wang, Siobhan McMahon, Abhay Pandit
Reactive astrocytosis and the subsequent glial scar is ubiquitous to injuries of the central nervous system, especially spinal cord injury (SCI) and primarily serves to protect against further damage, but is also a prominent inhibitor of regeneration. Manipulating the glial scar by targeting chondroitin sulphate proteoglycans (CSPGs) has been the focus of much study as a means to improve axon regeneration and subsequently functional recovery. In this study we investigate the ability of small interfering RNA (siRNA) delivered by a non-viral polymer vector to silence the rate-limiting enzyme involved in CSPG synthesis...
October 12, 2016: Neuroscience
Lei-Lei Wang, Zhida Su, Wenjiao Tai, Yuhua Zou, Xiao-Ming Xu, Chun-Li Zhang
Although the adult mammalian spinal cord lacks intrinsic neurogenic capacity, glial cells can be reprogrammed in vivo to generate neurons after spinal cord injury (SCI). How this reprogramming process is molecularly regulated, however, is not clear. Through a series of in vivo screens, we show here that the p53-dependent pathway constitutes a critical checkpoint for SOX2-mediated reprogramming of resident glial cells in the adult mouse spinal cord. While it has no effect on the reprogramming efficiency, the p53 pathway promotes cell-cycle exit of SOX2-induced adult neuroblasts (iANBs)...
October 11, 2016: Cell Reports
Paschalis Theotokis, Olga Touloumi, Roza Lagoudaki, Evangelia Nousiopoulou, Evangelia Kesidou, Spyridon Siafis, Theodoros Tselios, Athanasios Lourbopoulos, Dimitrios Karacostas, Nikolaos Grigoriadis, Constantina Simeonidou
BACKGROUND: Nogo-A and its putative receptor NgR are considered to be among the inhibitors of axonal regeneration in the CNS. However, few studies so far have addressed the issue of local NgR complex multilateral localization within inflammation in an MS mouse model of autoimmune demyelination. METHODS: Chronic experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice. Analyses were performed on acute (days 18-22) and chronic (day 50) time points and compared to controls...
October 11, 2016: Journal of Neuroinflammation
Andrea Tedeschi, Sebastian Dupraz, Claudia J Laskowski, Jia Xue, Thomas Ulas, Marc Beyer, Joachim L Schultze, Frank Bradke
Injuries to the adult CNS often result in permanent disabilities because neurons lose the ability to regenerate their axon during development. Here, whole transcriptome sequencing and bioinformatics analysis followed by gain- and loss-of-function experiments identified Cacna2d2, the gene encoding the Alpha2delta2 subunit of voltage-gated calcium channels (VGCCs), as a developmental switch that limits axon growth and regeneration. Cacna2d2 gene deletion or silencing promoted axon growth in vitro. In vivo, Alpha2delta2 pharmacological blockade through Pregabalin (PGB) administration enhanced axon regeneration in adult mice after spinal cord injury (SCI)...
September 27, 2016: Neuron
Warin Krityakiarana, Kamonrapat Sompup, Nopporn Jongkamonwiwat, Sujira Mukda, Fernando Gomez Pinilla, Piyarat Govitrapong, Pansiri Phansuwan-Pujito
The present work aimed at analyzing the effects of melatonin on scar formation after spinal cord injury (SCI). Upregulation of reactive astrocyte under SCI pathological conditions has been presented in several studies. It has been proved that the crucial factor in triggering this upregulation is proinflammatory cytokines. Moreover, scar formation is an important barrier to axonal regeneration through the lesion area. Melatonin plays an important role in reducing inflammation, but its effects on scar formation in the injured spinal cord remain unknown...
December 2016: Journal of Neuroscience Research
Harun Najib Noristani, Jean Charles Sabourin, Hassan Boukhaddaoui, Emilie Chan-Seng, Yannick Nicolas Gerber, Florence Evelyne Perrin
BACKGROUND: Neurons have intrinsic capability to regenerate after lesion, though not spontaneously. Spinal cord injury (SCI) causes permanent neurological impairments partly due to formation of a glial scar that is composed of astrocytes and microglia. Astrocytes play both beneficial and detrimental roles on axonal re-growth, however, their precise role after SCI is currently under debate. METHODS: We analyzed molecular changes in astrocytes at multiple stages after two SCI severities using cell-specific transcriptomic analyses...
October 6, 2016: Molecular Neurodegeneration
Anne Tscherter, Martina Heidemann, Sonja Kleinlogel, Jürg Streit
Presently there exists no cure for spinal cord injury (SCI). However, transplantation of embryonic tissue into spinal cord (SC) lesions resulted in axon outgrowth across the lesion site and some functional recovery, fostering hope for future stem cell therapies. Although in vivo evidence for functional recovery is given, the exact cellular mechanism of the graft support remains elusive: either the grafted cells provide a permissive environment for the host tissue to regenerate itself or the grafts actually integrate functionally into the host neuronal network reconnecting the separated SC circuits...
2016: Frontiers in Cellular Neuroscience
Lauren N Russell, Kyle J Lampe
Millions of people suffer from damage or disease to the nervous system that results in a loss of myelin, such as through a spinal cord injury or multiple sclerosis. Diminished myelin levels lead to further cell death in which unmyelinated neurons die. In the central nervous system, a loss of myelin is especially detrimental because of its poor ability to regenerate. Cell therapies such as stem or precursor cell injection have been investigated as stem cells are able to grow and differentiate into the damaged cells; however, stem cell injection alone has been unsuccessful in many areas of neural regeneration...
2016: Cells, Tissues, Organs
Zin Z Khaing, Arshia Ehsanipour, Christoph P Hofstetter, Stephanie K Seidlits
Spinal cord injury (SCI) is a devastating condition that leaves patients with limited motor and sensory function at and below the injury site, with little to no hope of a meaningful recovery. Because of their ability to mimic multiple features of central nervous system (CNS) tissues, injectable hydrogels are being developed that can participate as therapeutic agents in reducing secondary injury and in the regeneration of spinal cord tissue. Injectable biomaterials can provide a supportive substrate for tissue regeneration, deliver therapeutic factors, and regulate local tissue physiology...
2016: Cells, Tissues, Organs
Christopher D L Johnson, Anthony R D'Amato, Ryan J Gilbert
There is currently no cure for individuals with spinal cord injury (SCI). While many promising approaches are being tested in clinical trials, the complexity of SCI limits several of these approaches from aiding complete functional recovery. Several different categories of biomaterials are investigated for their ability to guide axonal regeneration, to deliver proteins or small molecules locally, or to improve the viability of transplanted stem cells. The purpose of this study is to provide a brief overview of SCI, present the different categories of biomaterial scaffolds that direct and guide axonal regeneration, and then focus specifically on electrospun fiber guidance scaffolds...
2016: Cells, Tissues, Organs
Courtney M Dumont, Daniel J Margul, Lonnie D Shea
Tissue engineering strategies have shown promise in promoting healing and regeneration after spinal cord injury (SCI); however, these strategies are limited by inflammation and the immune response. Infiltration of cells of the innate and adaptive immune responses and the inflammation that follows cause secondary damage adjacent to the injury, increased scarring, and a potently inhibitory environment for the regeneration of damaged neurons. While the inflammation that ensues is typically associated with limited regeneration, the immune response is a crucial element in the closing of the blood-brain barrier, minimizing the spread of injury, and initiating healing...
2016: Cells, Tissues, Organs
Jonathan M Zuidema, Ryan J Gilbert, Donna J Osterhout
Nanoparticles are increasingly being studied within experimental models of spinal cord injury (SCI). They are used to image cells and tissue, move cells to specific regions of the spinal cord, and deliver therapeutic agents locally. The focus of this article is to provide a brief overview of the different types of nanoparticles being studied for spinal cord applications and present data showing the capability of nanoparticles to deliver the chondroitinase ABC (chABC) enzyme locally following acute SCI in rats...
2016: Cells, Tissues, Organs
Yan Zhao, Yuan Zuo, Jianming Jiang, Huibo Yan, Xiliang Wang, Hunjun Huo, Yulong Xiao
Spinal cord injury (SCI) comprises nerve and motor function disorders that may be caused by a variety of damaging factors and is challenging to treat. The aim of the present study was to investigate the regenerative effects of neural stem cell (NSC) transplantation combined with intraperitoneal injection of erythropoietin (EPO) on cross-sectional SCI in rats. A model of SCI was induced in 40 adult Wistar rats via the complete transection of the 10th thoracic vertebra (T10). The rats were allocated at random into 4 groups: Control, NSC, EPO and NSC + EPO groups (n=10 per group)...
October 2016: Experimental and Therapeutic Medicine
Ying Wang, Hua Jia, Wen-Yuan Li, Li-Xin Guan, Lingxiao Deng, Yan-Cui Liu, Gui-Bo Liu
The present study aimed to evaluate the molecular mechanisms underlying combinatorial bone marrow stromal cell (BMSC) transplantation and chondroitinase ABC (Ch-ABC) therapy in a model of acellular nerve allograft (ANA) repair of the sciatic nerve gap in rats. Sprague Dawley rats (n=24) were used as nerve donors and Wistar rats (n=48) were randomly divided into the following groups: Group I, Dulbecco's modified Eagle's medium (DMEM) control group (ANA treated with DMEM only); Group II, Ch-ABC group (ANA treated with Ch-ABC only); Group III, BMSC group (ANA seeded with BMSCs only); Group IV, Ch-ABC + BMSCs group (Ch-ABC treated ANA then seeded with BMSCs)...
October 2016: Experimental and Therapeutic Medicine
Carlos B Mantilla
Breathing is a life-sustaining behavior that in mammals is accomplished by activation of dedicated muscles responsible for inspiratory and expiratory forces acting on the lung and chest wall. Motor control is exerted by specialized pools of motoneurons in the medulla and spinal cord innervated by projections from multiple centers primarily in the brainstem that act in concert to generate both the rhythm and pattern of ventilation. Perturbations that prevent the accomplishment of the full range of motor behaviors by respiratory muscles commonly result in significant morbidity and increased mortality...
September 30, 2016: Experimental Neurology
Lucian Beer, Michael Mildner, Mariann Gyöngyösi, Hendrik Jan Ankersmit
For almost two decades, cell-based therapies have been tested in modern regenerative medicine to either replace or regenerate human cells, tissues, or organs and restore normal function. Secreted paracrine factors are increasingly accepted to exert beneficial biological effects that promote tissue regeneration. These factors are called the cell secretome and include a variety of proteins, lipids, microRNAs, and extracellular vesicles, such as exosomes and microparticles. The stem cell secretome has most commonly been investigated in pre-clinical settings...
October 1, 2016: Apoptosis: An International Journal on Programmed Cell Death
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"