keyword
MENU ▼
Read by QxMD icon Read
search

pluripotent cell

keyword
https://www.readbyqxmd.com/read/28637335/astrocyte-produced-mir-146a-as-a-mediator-of-motor-neuron-loss-in-spinal-muscular-atrophy
#1
Samantha L Sison, Teresa N Patitucci, Emily R Seminary, Eric Villalon, Christian L Lorson, Allison D Ebert
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, is caused by loss of the survival motor neuron-1 (SMN1) gene, which leads to motor neuron loss, muscle atrophy, respiratory distress, and death. Motor neurons exhibit the most profound loss, but the mechanisms underlying disease pathogenesis are not fully understood. Recent evidence suggests that motor neuron extrinsic influences, such as those arising from astrocytes, contribute to motor neuron malfunction and loss. Here we investigated both loss-of-function and toxic gain-of-function astrocyte mechanisms that could play a role in SMA pathology...
June 15, 2017: Human Molecular Genetics
https://www.readbyqxmd.com/read/28636920/nanog-fluctuations-in-embryonic-stem-cells-highlight-the-problem-of-measurement-in-cell-biology
#2
Rosanna C G Smith, Patrick S Stumpf, Sonya J Ridden, Aaron Sim, Sarah Filippi, Heather A Harrington, Ben D MacArthur
A number of important pluripotency regulators, including the transcription factor Nanog, are observed to fluctuate stochastically in individual embryonic stem cells. By transiently priming cells for commitment to different lineages, these fluctuations are thought to be important to the maintenance of, and exit from, pluripotency. However, because temporal changes in intracellular protein abundances cannot be measured directly in live cells, fluctuations are typically assessed using genetically engineered reporter cell lines that produce a fluorescent signal as a proxy for protein expression...
June 20, 2017: Biophysical Journal
https://www.readbyqxmd.com/read/28636277/esrrb-plays-a-crucial-role-in-the-promotion-of-porcine-cell-reprogramming
#3
Fan Yang, Yahui Ren, Huan Li Huayan Wang
The estrogen-related receptor b (ESRRB) is an orphan nuclear receptor and targets many genes involved in self-renewal and pluripotency. In mouse ES cells, overexpression of ESRRB can maintain LIF-independent self-renewal in the absence of Nanog. However, the fundamental features of porcine ESRRB remain elusive. In this study, we revealed the expression profiles of ESRRB in both porcine pluripotent stem cells and early stage embryos and dissected the functional domains of ESRRB protein to prove that ESRRB is a key transcription factor that enhanced porcine pluripotent gene activation...
June 21, 2017: Journal of Cellular Physiology
https://www.readbyqxmd.com/read/28636235/stem-cell-based-tooth-and-periodontal-regeneration
#4
Lei Hu, Yi Liu, Songlin Wang
Currently regeneration of tooth and periodontal damage still remains great challenge. Stem cell-based tissue engineering raised novel therapeutic strategies for tooth and periodontal repair. Stem cells for tooth and periodontal regeneration include dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), stem cells from the dental apical papilla (SCAPs), and stem cells from human exfoliated deciduous teeth (SHEDs), dental follicle stem cells (DFSCs), dental epithelial stem cells (DESCs), bone marrow mesenchymal stem cells (BMMSCs), adipose-derived stem cells (ADSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs)...
June 21, 2017: Oral Diseases
https://www.readbyqxmd.com/read/28636192/intestinal-barrier-integrity-and-inflammatory-bowel-disease-stem-cell-based-approaches-to-regenerate-the-barrier
#5
REVIEW
Fredrik E O Holmberg, Jannie Pedersen, Peter Jørgensen, Christoffer Soendergaard, Kim B Jensen, Ole H Nielsen
Disruption of normal barrier function is a fundamental factor in the pathogenesis of inflammatory bowel disease, which includes increased epithelial cell death, modified mucus configuration, altered expression and distribution of tight junction-proteins, along with a decreased expression of antimicrobial peptides. Inflammatory bowel disease is associated with life-long morbidity for affected patients, and both the incidence and prevalence is increasing globally, resulting in substantial economic strain for society...
June 21, 2017: Journal of Tissue Engineering and Regenerative Medicine
https://www.readbyqxmd.com/read/28635509/induced-pluripotent-stem-cell-derived-dopaminergic-neurons-from-adult-common-marmoset-fibroblasts
#6
Scott C Vermilyea, Scott Guthrie, Michael Meyer, Kim Smuga-Otto, Katarina Braun, Sara Howden, James A Thomson, Su-Chun Zhang, Marina Emborg, Dr Thaddeus G Golos
The common marmoset monkey (Callithrix jacchus; Cj) is an advantageous nonhuman primate species for modeling age-related disorders, including Parkinson's disease, due to their shorter lifespan compared to macaques. Cj-derived induced pluripotent stem cells (Cj-iPSCs) from somatic cells are needed for in vitro disease modeling and testing regenerative medicine approaches. Here we report the development of a novel Cj-iPSC line derived from adult marmoset fibroblasts. The Cj-iPSCs showed potent pluripotency properties including development of mesodermal lineages in tumors after injection to immunocompromised mice, as well as ectoderm and endoderm lineages after in vitro differentiation regimens, demonstrating differentiated derivatives of all three embryonic layers...
June 21, 2017: Stem Cells and Development
https://www.readbyqxmd.com/read/28635177/engineering-human-bone-grafts-with-new-macroporous-calcium-phosphate-cement-scaffolds
#7
Martina Sladkova, Michael Palmer, Caroline Öhman, Jiayi Cheng, Shoug Al-Ansari, Munerah Saad, Håkan Engqvist, Giuseppe Maria de Peppo
Bone engineering opens the possibility to grow large amounts of tissue products by combining patient-specific cells with compliant biomaterials. Decellularized tissue matrices represent suitable biomaterials but availability, long processing time, excessive cost, and concerns on pathogen transmission have led to the development of biomimetic synthetic alternatives. We recently fabricated calcium phosphate cement (CPC) scaffolds with variable macroporosity using a facile synthesis method with minimal manufacturing steps, and demonstrated long-term biocompatibility in vitro...
June 21, 2017: Journal of Tissue Engineering and Regenerative Medicine
https://www.readbyqxmd.com/read/28634847/carbon-nanotubes-embedded-in-embryoid-bodies-direct-cardiac-differentiation
#8
Samad Ahadian, Shukuyo Yamada, Mehdi Estili, Xiaobin Liang, Ramin Banan Sadeghian, Ken Nakajima, Hitoshi Shiku, Tomokazu Matsue, Ali Khademhosseini
We embedded carbon nanotubes (CNTs) in mouse embryoid bodies (EBs) for modulating mechanical and electrical cues of the stem cell niche. The CNTs increased the mechanical integrity and electrical conductivity of the EBs. Measured currents for the unmodified EBs (hereafter, EBs) and the EBs-0.25 mg/mL CNTs were 0.79 and 26.3 mA, respectively, at voltage of 5 V. The EBs had a Young's modulus of 20.9 ± 6.5 kPa, whereas the Young's modulus of the EB-0.1 mg/mL CNTs was 35.2 ± 5.6 kPa. The EB-CNTs also showed lower proliferation and greater differentiation rates compared with the EBs as determined by the expression of pluripotency genes and the analysis of EB sizes...
September 2017: Biomedical Microdevices
https://www.readbyqxmd.com/read/28634270/making-muscle-skeletal-myogenesis-in-vivo-and-in-vitro
#9
REVIEW
Jérome Chal, Olivier Pourquié
Skeletal muscle is the largest tissue in the body and loss of its function or its regenerative properties results in debilitating musculoskeletal disorders. Understanding the mechanisms that drive skeletal muscle formation will not only help to unravel the molecular basis of skeletal muscle diseases, but also provide a roadmap for recapitulating skeletal myogenesis in vitro from pluripotent stem cells (PSCs). PSCs have become an important tool for probing developmental questions, while differentiated cell types allow the development of novel therapeutic strategies...
June 15, 2017: Development
https://www.readbyqxmd.com/read/28634006/testosterone-differentially-affects-t-cells-and-neurons-in-murine-and-human-models-of-neuroinflammation-and-neurodegeneration
#10
Megan G Massa, Christina David, Stefanie Jörg, Johannes Berg, Barbara Gisevius, Sarah Hirschberg, Ralf A Linker, Ralf Gold, Aiden Haghikia
The high female-to-male sex ratio of multiple sclerosis (MS) prevalence has continuously confounded researchers, especially in light of male patients' accelerated disease course at later stages of MS. Although multiple studies have concentrated on estrogenic mechanisms of disease modulation, fairly little attention has been paid to androgenic effects in a female system, and even fewer studies have attempted to dissociate hormonal effects on the neurodegenerative and neuroinflammatory processes of MS. Herein, we demonstrate the differential effects of hormone treatment on the acute inflammatory and chronic neurodegenerative phases of murine experimental autoimmune encephalomyelitis...
July 2017: American Journal of Pathology
https://www.readbyqxmd.com/read/28633916/novel-variant-of-oct4b4-is-differentially-expressed-in-human-embryonic-stem-and-embryonic-carcinoma-cells
#11
Ensieh M Poursani, Majid Mehravar, Bahram Mohammad Soltani, Seyed Javad Mowla
POU domain proteins are an important family of transcription factors that regulates cell type-specific gene expression. One of the most crucial members of this family that maintains pluripotency and self-renewal of embryonic stem cells is POU5F1/OCT4. The OCT4 gene can generate several variants under different situations/cell types includes OCT4A that is the major factor sustains pluripotency in embryonic stem and embryonic carcinoma cells, and also OCT4B and OCT4B1, which might be transcribed from a different potential promoter located in intron1 and are expressed in various tissues and cell types...
June 17, 2017: Gene
https://www.readbyqxmd.com/read/28633106/selective-photocytotoxicity-of-anthrols-on-cancer-stem-like-cells-the-effect-of-quinone-methides-or-reactive-oxygen-species
#12
Lidija Uzelac, Đani Škalamera, Kata Mlinarić-Majerski, Nikola Basarić, Marijeta Kralj
Cancer stem cells (CSCs) are a subpopulation of cancer cells that share properties of embryonic stem cells like pluripotency and self-renewal and show increased resistance to chemo- and radiotherapy. Targeting CSC, rather than cancer cells in general, is a novel and promising strategy for cancer treatment. Novel therapeutic approaches, such as photodynamic therapy (PDT) have been investigated. A promising group of phototherapeutic agents are reactive intermediates - quinone methides (QMs). This study describes preparation of QM precursor, 2-hydroxy-3-hydroxymethylanthracene (2) and a detailed photochemical and photobiological investigation on similar anthracene derivatives 3 and 4...
June 3, 2017: European Journal of Medicinal Chemistry
https://www.readbyqxmd.com/read/28632820/the-nexus-of-stem-cell-derived-beta-cells-and-genome-engineering
#13
Sara D Sackett, Aida Rodriguez, Jon S Odorico
Diabetes, type 1 and type 2 (T1D and T2D), are diseases of epidemic proportions, which are complicated and defined by genetics, epigenetics, environment, and lifestyle choices. Current therapies consist of whole pancreas or islet transplantation. However, these approaches require life-time immunosuppression, and are compounded by the paucity of available donors. Pluripotent stem cells have advanced research in the fields of stem cell biology, drug development, disease modeling, and regenerative medicine, and importantly allows for the interrogation of therapeutic interventions...
2017: Review of Diabetic Studies: RDS
https://www.readbyqxmd.com/read/28632762/dot1l-inhibitor-improves-early-development-of-porcine-somatic-cell-nuclear-transfer-embryos
#14
Jia Tao, Yu Zhang, Xiaoyuan Zuo, Renyun Hong, Hui Li, Xing Liu, Weiping Huang, Zubing Cao, Yunhai Zhang
Incomplete epigenetic reprogramming of the genome of donor cells causes poor early and full-term developmental efficiency of somatic cell nuclear transfer (SCNT) embryos. Previous research indicate that inhibition of the histone H3 K79 methyltransferase DOT1L, using a selective pharmacological inhibitor EPZ004777 (EPZ), significantly improved reprogramming efficiency during the generation of mouse induced pluripotent stem cells. However, the roles of DOT1L in porcine nuclear transfer-mediated cellular reprogramming are not yet known...
2017: PloS One
https://www.readbyqxmd.com/read/28632430/hematopoietic-developmental-potential-of-human-pluripotent-stem-cell-lines-is-accompanied-by-the-morphology-of-embryoid-bodies-and-the-expression-of-endodermal-and-hematopoietic-markers
#15
Lenka Tesarova, Pavel Simara, Stanislav Stejskal, Irena Koutna
The potential clinical applications of hematopoietic stem cells (HSCs) derived from human pluripotent stem cells (hPSCs) are limited by the difficulty of recapitulating embryoid hematopoiesis and by the unknown differentiation potential of hPSC lines. To evaluate their hematopoietic developmental potential, available hPSC lines were differentiated by an embryoid body (EB) suspension culture in serum-free medium supplemented with three different cytokine mixes (CMs). The hPSC differentiation status was investigated by the flow cytometry expression profiles of cell surface molecules, and the gene expression of pluripotency and differentiation markers over time was evaluated by real-time reverse transcription polymerase chain reaction (qRT-PCR)...
June 20, 2017: Cellular Reprogramming
https://www.readbyqxmd.com/read/28631858/sensory-response-in-host-and-engrafted-astrocytes-of-adult-brain-in-vivo
#16
REVIEW
Kuan Zhang, Xiaowei Chen
Rapid advances in Ca(2+) imaging techniques enable us to simultaneously monitor the activities of hundreds of astrocytes in the intact brain, thus providing a powerful tool for understanding the functions of both host and engrafted astrocytes in sensory processing in vivo. These techniques include both improved Ca(2+) indicators and advanced optical recording methods. Astrocytes in multiple cortical and sub-cortical areas are able to respond to the corresponding sensory modalities. These sensory stimuli produce astrocytic Ca(2+) responses through different cellular mechanisms...
June 20, 2017: Glia
https://www.readbyqxmd.com/read/28631381/tec-controls-pluripotency-and-early-cell-fate-decisions-of-human-pluripotent-stem-cells-via-regulation-of-fgf2-secretion
#17
Tereza Vanova, Zaneta Konecna, Zuzana Zbonakova, Giuseppe La Venuta, Karolina Zoufalova, Sarka Jelinkova, Miroslav Varecha, Vladimir Rotrekl, Pavel Krejci, Walter Nickel, Petr Dvorak, Michaela Kunova Bosakova
Human pluripotent stem cells (hPSC) require signaling provided by fibroblast growth factor (FGF) receptors. This can be initiated by the recombinant FGF2 ligand supplied exogenously, but hPSC further support their niche by secretion of endogenous FGF2. In this study, we describe a role of TEC kinase (tyrosine kinase expressed in hepatocellular carcinoma) in this process. We show that TEC-mediated FGF2 secretion is essential for hPSC self-renewal, and its lack mediates specific differentiation. Following both shRNA- and siRNA-mediated TEC knock-down, hPSC secrete less FGF2...
June 20, 2017: Stem Cells
https://www.readbyqxmd.com/read/28630448/progesterone-prevents-epithelial-mesenchymal-transition-of-ovine-amniotic-epithelial-cells-and-enhances-their-immunomodulatory-properties
#18
Angelo Canciello, Valentina Russo, Paolo Berardinelli, Nicola Bernabò, Aurelio Muttini, Mauro Mattioli, Barbara Barboni
The in vitro expansion is detrimental to therapeutic applications of amniotic epithelial cells (AEC), an emerging source of fetal stem cells. This study provides molecular evidences of progesterone (P4) role in preventing epithelial-mesenchymal transition (EMT) in ovine AEC (oAEC). oAEC amplified under standard conditions spontaneously acquired mesenchymal properties through the up-regulation of EMT-transcription factors. P4 supplementation prevented phenotype shift by inhibiting the EMT-inducing mechanism such as the autocrine production of TGF-β and the activation of intracellular-related signaling...
June 19, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28630175/patient-specific-induced-pluripotent-stem-cell-based-disease-model-for-pathogenesis-studies-and-clinical-pharmacotherapy
#19
EDITORIAL
Yingxin Li, Karim Sallam, Peter J Schwartz, Joseph C Wu
No abstract text is available yet for this article.
June 2017: Circulation. Arrhythmia and Electrophysiology
https://www.readbyqxmd.com/read/28630169/patient-specific-drug-screening-using-a-human-induced-pluripotent-stem-cell-model-of-catecholaminergic-polymorphic-ventricular-tachycardia-type-2
#20
Leonid Maizels, Irit Huber, Gil Arbel, Anke J Tijsen, Amira Gepstein, Asaad Khoury, Lior Gepstein
BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia type 2 (CPVT2) results from autosomal recessive CASQ2 mutations, causing abnormal Ca(2+)-handling and malignant ventricular arrhythmias. We aimed to establish a patient-specific human induced pluripotent stem cell (hiPSC) model of CPVT2 and to use the generated hiPSC-derived cardiomyocytes to gain insights into patient-specific disease mechanism and pharmacotherapy. METHODS AND RESULTS: hiPSC cardiomyocytes were derived from a CPVT2 patient (D307H-CASQ2 mutation) and from healthy controls...
June 2017: Circulation. Arrhythmia and Electrophysiology
keyword
keyword
67583
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"