Read by QxMD icon Read

pluripotent cell

Georgios N Panagopoulos, Panayiotis D Megaloikonomos, Andreas F Mavrogenis
Peripheral nerve injury can have a potentially devastating impact on a patient's quality of life, resulting in severe disability with substantial social and personal cost. Refined microsurgical techniques, advances in peripheral nerve topography, and a better understanding of the pathophysiology and molecular basis of nerve injury have all led to a decisive leap forward in the field of translational neurophysiology. Nerve repair, nerve grafting, and nerve transfers have improved significantly with consistently better functional outcomes...
October 25, 2016: Orthopedics
Rahul Agrawal, Tina P Dale, Mohammed A Al-Zubaidi, Prit Benny Malgulwar, Nicholas R Forsyth, Ritu Kulshreshtha
MicroRNAs are reported to have a crucial role in the regulation of self-renewal and differentiation of stem cells. Hypoxia has been identified as a key biophysical element of the stem cell culture milieu however, the link between hypoxia and miRNA expression in stem cells remains poorly understood. We therefore explored miRNA expression in hypoxic human embryonic and mesenchymal stem cells (hESCs and hMSCs). A total of 50 and 76 miRNAs were differentially regulated by hypoxia (2% O2) in hESCs and hMSCs, respectively, with a negligible overlap of only three miRNAs...
2016: PloS One
Giorgia Quadrato, Juliana Brown, Paola Arlotta
Neuropsychiatric disorders such as autism spectrum disorder (ASD), schizophrenia (SCZ) and bipolar disorder (BPD) are of great societal and medical importance, but the complexity of these diseases and the challenges of modeling the development and function of the human brain have made these disorders difficult to study experimentally. The recent development of 3D brain organoids derived from human pluripotent stem cells offers a promising approach for investigating the phenotypic underpinnings of these highly polygenic disorders and for understanding the contribution of individual risk variants and complex genetic background to human pathology...
October 26, 2016: Nature Medicine
Jaber Zafari, Fatemeh Javani Jouni, Ali Ahmadvand, Parviz Abdolmaleki, Malihe Soodi, Rezvan Zendehdel
A model was set up to predict the differentiation patterns based on the data extracted from FTIR spectroscopy. For this reason, bone marrow stem cells (BMSCs) were differentiated to primordial germ cells (PGCs). Changes in cellular macromolecules in the time of 0, 24, 48, 72, and 96h of differentiation, as different steps of the differentiation procedure were investigated by using FTIR spectroscopy. Also, the expression of pluripotency (Oct-4, Nanog and c-Myc) and specific genes (Mvh, Stella and Fragilis) were investigated by real-time PCR...
October 17, 2016: Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy
G Galeati, E Giaretta, A Zannoni, D Bucci, C Tamanini, M Forni, M Spinaci
Oxidative stress caused from in vitro culture contributes to inadequate oocyte maturation which leads to a poor embryo development. Therefore, it is important to protect oocytes and embryos against oxidative stress. This study was aimed at evaluating the effect of Embelin (2,5-dihydroxy-3-undecyl-1,4-benzoquinone), an antioxidant with various pharmacologic activities, on nuclear and cytoplasmic maturation of pig oocytes as well as on steroidogenesis of cumulus cells (CCs). Another objective was to determine the influence of Embelin on developmental competence of pig oocytes as well as the expression levels of three key genes (Nanog, Sox2 and Oct4) involved in the control of pluripotency in parthenogenetically activated embryos...
August 2016: Journal of Physiology and Pharmacology: An Official Journal of the Polish Physiological Society
Silin Sa, Mingxia Gu, James Chappell, Ning-Yi Shao, Mohamed Ameen, Kathryn A T Elliott, Dan Li, Fabian Grubert, Caiyun G Li, Shalina Taylor, Aiqin Cao, Yu Ma, Ryan Fong, Long Nguyen, Joseph C Wu, Michael P Snyder, Marlene Rabinovitch
RATIONALE: Idiopathic or heritable pulmonary arterial hypertension is characterized by loss and obliteration of lung vasculature. Endothelial cell dysfunction is pivotal to the pathophysiology but different causal mechanisms may reflect a need for patient-tailored therapies. OBJECTIVES: Endothelial cells differentiated from induced pluripotent stem cells were compared to pulmonary arterial endothelial cells from the same patients with idiopathic or heritable pulmonary arterial hypertension, to determine whether they shared functional abnormalities and altered gene expression patterns, that differed from those in unused donor cells...
October 25, 2016: American Journal of Respiratory and Critical Care Medicine
Eva C Thoma, Tobias Heckel, David Keller, Nicolas Giroud, Brian Leonard, Klaus Christensen, Adrian Roth, Cristina Bertinetti-Lapatki, Martin Graf, Christoph Patsch
Due to their broad differentiation potential, pluripotent stem cells (PSCs) offer a promising approach for generating relevant cellular models for various applications. While human PSC-based cellular models are already advanced, similar systems for non-human primates (NHPs) are still lacking. However, as NHPs are the most appropriate animals for evaluating the safety of many novel pharmaceuticals, the availability of in vitro systems would be extremely useful to bridge the gap between cellular and animal models...
October 25, 2016: Scientific Reports
Jiho Jang, Sangjun Park, Hye Jin Hur, Hyun-Ju Cho, Inhwa Hwang, Yun Pyo Kang, Isak Im, Hyunji Lee, Eunju Lee, Wonsuk Yang, Hoon-Chul Kang, Sung Won Kwon, Je-Wook Yu, Dong-Wook Kim
X-linked adrenoleukodystrophy (X-ALD), caused by an ABCD1 mutation, is a progressive neurodegenerative disorder associated with the accumulation of very long-chain fatty acids (VLCFA). Cerebral inflammatory demyelination is the major feature of childhood cerebral ALD (CCALD), the most severe form of ALD, but its underlying mechanism remains poorly understood. Here, we identify the aberrant production of cholesterol 25-hydroxylase (CH25H) and 25-hydroxycholesterol (25-HC) in the cellular context of CCALD based on the analysis of ALD patient-derived induced pluripotent stem cells and ex vivo fibroblasts...
October 25, 2016: Nature Communications
Vellingiri Balachandar, Venkatesan Dhivya, Mohan Gomathi, Subramaniam Mohanadevi, Balasubramanian Venkatesh, Bharathi Geetha
Human induced pluripotent stem cells (hiPSCs) are pluripotent stem cells generated from somatic cells by the introduction of a combination of pluripotency-associated genes such as OCT4, SOX2, along with either KLF4 and c-MYC or NANOG and LIN28 via retroviral or lentiviral vectors. Most importantly, hiPSCs are similar to human embryonic stem cells (hESCs) functionally as they are pluripotent and can potentially differentiate into any desired cell type when provided with the appropriate cues, but do not have the ethical issues surrounding hESCs...
2016: Stem Cell Investigation
Alessandro Rosa, Monica Ballarino
No abstract text is available yet for this article.
2016: Stem Cell Investigation
W Li, L Huang, J Zeng, W Lin, K Li, J Sun, W Huang, J Chen, G Wang, Q Ke, J Duan, X Lai, R Chen, M Liu, Y Liu, T Wang, X Yang, Y Chen, H Xia, A P Xiang
The enteric nervous system (ENS) is recognized as a second brain because of its complexity and its largely autonomic control of bowel function. Recent progress in studying the interactions between the ENS and the central nervous system (CNS) has implicated alterations of the gut/brain axis as a possible mechanism in the pathophysiology of autism spectrum disorders (ASDs), Parkinson's disease (PD) and other human CNS disorders, whereas the underlying mechanisms are largely unknown because of the lack of good model systems...
October 25, 2016: Molecular Psychiatry
Nelly Rahkonen, Aki Stubb, Maia Malonzo, Sanna Edelman, Maheswara Reddy Emani, Elisa Närvä, Harri Lähdesmäki, Hannele Ruohola-Baker, Riitta Lahesmaa, Riikka Lund
MicroRNAs (miRNA) are central regulators of diverse biological processes and are important in the regulation of stem cell self-renewal. One of the widely studied miRNA-protein regulators is the Lin28-Let-7 pair. In this study, we demonstrate that contrary to the well-established models of mouse ES cells (mESC) and transformed human cancer cells, the pluripotent state of human ES cells (hESC) involves expression of mature Let-7 family miRNAs with concurrent expression of all LIN28 proteins. We show that mature Let-7 miRNAs are regulated during hESC differentiation and have opposite expression profile with LIN28B...
September 24, 2016: Stem Cell Research
Wei-Lin Jin, Xiao-Yuan Mao, Guan-Zhong Qiu
Glioblastoma (GBM) is regarded as the most common primary intracranial neoplasm. Despite standard treatment with tumor resection and radiochemotherapy, the outcome remains gloomy. It is evident that a combination of oncogenic gain of function and tumor-suppressive loss of function has been attributed to glioma initiation and progression. The ubiquitin-proteasome system is a well-orchestrated system that controls the fate of most proteins by striking a dynamic balance between ubiquitination and deubiquitination of substrates, having a profound influence on the modulation of oncoproteins, tumor suppressors, and cellular signaling pathways...
October 24, 2016: Medicinal Research Reviews
Christopher Goldring, Daniel J Antoine, Frank Bonner, Jonathan Crozier, Chris Denning, Robert J Fontana, Neil A Hanley, David C Hay, Magnus Ingelman-Sundberg, Satu Juhila, Neil Kitteringham, Beatriz Silva-Lima, Alan Norris, Chris Pridgeon, James A Ross, Rowena Sison Young, Danilo Tagle, Belen Tornesi, Bob van de Water, Richard J Weaver, Fang Zhang, B Kevin Park
Current preclinical drug testing does not predict some forms of adverse drug reactions in humans. Efforts at improving predictability of drug-induced tissue injury in humans include using stem cell technology to generate human cells for screening for adverse effects of drugs in humans. The advent of induced pluripotent stem cells means that it may ultimately be possible to develop personalised toxicology to determine inter-individual susceptibility to adverse drug reactions. However, the complexity of idiosyncratic drug-induced liver injury (DILI) means that no current single cell model, whether of primary liver tissue origin, from liver cell lines, or derived from stem cells, adequately emulates what is believed to occur during human DILI...
October 24, 2016: Hepatology: Official Journal of the American Association for the Study of Liver Diseases
Ken-Ichiro Kamei, Yoshie Koyama, Yumie Tokunaga, Yasumasa Mashimo, Momoko Yoshioka, Christopher Fockenberg, Rowland Mosbergen, Othmar Korn, Christine Wells, Yong Chen
Human pluripotent stem cells hold great promise for applications in drug discovery and regenerative medicine. Microfluidic technology is a promising approach for creating artificial microenvironments; however, although a proper 3D microenvironment is required to achieve robust control of cellular phenotypes, most current microfluidic devices provide only 2D cell culture and do not allow tuning of physical and chemical environmental cues simultaneously. Here, the authors report a 3D cellular microenvironment plate (3D-CEP), which consists of a microfluidic device filled with thermoresponsive poly(N-isopropylacrylamide)-β-poly(ethylene glycol) hydrogel (HG), which enables systematic tuning of both chemical and physical environmental cues as well as in situ cell monitoring...
October 24, 2016: Advanced Healthcare Materials
Byung-Chul Kim, Sung-Min Jun, So Yeon Kim, Yong-Dae Kwon, Sung Chul Choe, Eun-Chul Kim, Jae-Hyung Lee, Jinseok Kim, Jun-Kyo Farancis Suh, Yu-Shik Hwang
The in vitro generation of cell-based three dimensional (3D) nerve tissue is an attractive subject to improve graft survival and integration into host tissue for neural tissue regeneration or to model biological events in stem cell differentiation. Although 3D organotypic culture strategies are well established for 3D nerve tissue formation of pluripotent stem cells to study underlying biology in nerve development, cell-based nerve tissues have not been developed using human postnatal stem cells with therapeutic potential...
October 24, 2016: Biotechnology and Bioengineering
M T Cardoso, A O Pinheiro, A S Vidane, J B Casals, V C de Oliveira, Njn Gonçalves, D S Martins, C E Ambrósio
The biosafety of innovative procedures that utilize stem cells in regenerative medicine has been addressed in several studies. Previous work has showed no tumour formation following the use of feline and human amniotic membrane-derived stem cells (AMSCs). In contrast, tumour formation was observed when canine AMSCs were utilized. These findings suggested that feline and human, but not canine, AMSCs are suitable for cell transplantation trials. This study aimed to further evaluate the feasibility of utilizing canine AMSCs for transplantation purposes as well as for felines...
October 23, 2016: Reproduction in Domestic Animals, Zuchthygiene
Ilyas Singeç, Anton Simeonov
Pluripotent stem cell research has made extraordinary progress over the last decade. The robustness of nuclear reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) has created entirely novel opportunities for drug discovery and personalized regenerative medicine. Patient- and disease-specific iPSCs can be expanded indefinitely and differentiated into relevant cell types of different organ systems. As the utilization of iPSCs is becoming a key enabling technology across various scientific disciplines, there are still important challenges that need to be addressed...
2016: Drug Target Review
Apurva Kulkarni, Priya Ganesan, Lauren A O'Donnell
Interferon-gamma (IFNγ), a pleiotropic cytokine, is expressed in diverse neurodegenerative and neuroinflammatory conditions. Its protective mechanisms are well documented during viral infections in the brain, where IFNγ mediates non-cytolytic viral control in infected neurons. However, IFNγ also plays both protective and pathological roles in other central nervous system (CNS) diseases. Of the many neural cells that respond to IFNγ, neural stem/progenitor cells (NSPCs), the only pluripotent cells in the developing and adult brain, are often altered during CNS insults...
2016: Clinical Medicine Insights. Pathology
Yaara Cohen-Hadad, Gheona Altarescu, Talia Eldar-Geva, Ephrat Levi-Lahad, Ming Zhang, Ekaterina Rogaeva, Marc Gotkine, Osnat Bartok, Reut Ashwal-Fluss, Sebastian Kadener, Silvina Epsztejn-Litman, Rachel Eiges
We established two human embryonic stem cell (hESC) lines with a GGGGCC expansion in the C9orf72 gene (C9), and compared them with haploidentical and unrelated C9 induced pluripotent stem cells (iPSCs). We found a marked difference in C9 methylation between the cells. hESCs and parental fibroblasts are entirely unmethylated while the iPSCs are hypermethylated. In addition, we show that the expansion alters promoter usage and interferes with the proper splicing of intron 1, eventually leading to the accumulation of repeat-containing mRNA following neural differentiation...
October 17, 2016: Stem Cell Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"