Read by QxMD icon Read

stem cell, injury, regeneration

Ioannis Politikos, Haesook Kim, Theodoros Karantanos, Julia Brown, Sean McDonough, Lequn Li, Corey Cutler, Joseph H Antin, Karen K Ballen, Jerome Ritz, Vassiliki A Boussiotis
Umbilical cord blood (UCB) is a valuable graft source for allogeneic hematopoietic stem cell transplantation (HSCT) in patients who lack adult donors. UCB transplantation (UCBT) in adults results in delayed immune reconstitution leading to high infection-related morbidity and mortality. Angiogenic factors and markers of endothelial dysfunction have biologic and prognostic significance in conventional HSCT, but their role in UCBT has not been investigated. Furthermore, the interplay between angiogenesis and immune reconstitution has not been studied...
October 21, 2016: Biology of Blood and Marrow Transplantation
Jing Wang, Binbin Sun, Lingling Tian, Xiaomin He, Qiang Gao, Tong Wu, Seeram Ramakrishna, Jinghao Zheng, Xiumei Mo
Tracheal injuries are one of major challenging issues in clinical medicine because of the poor intrinsic ability of tracheal cartilage for repair. Tissue engineering provides an alternative method for the treatment of tracheal defects by generating replacement tracheal structures. In this study, core-shell nanofibrous scaffold was fabricated to encapsulate bovine serum albumin & rhTGF-β3 (recombinant human transforming growth factor-β3) into the core of the nanofibers for tracheal cartilage regeneration. Characterization of the core-shell nanofibrous scaffold was carried out by scanning electron microscope (SEM), transmission electron microscope (TEM), laser scanning confocal microscopy (LSCM), and tensile mechanical test...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
M Sartori, S Pagani, A Ferrari, V Costa, V Carina, E Figallo, M C Maltarello, L Martini, M Fini, G Giavaresi
Current treatments for acute or degenerative chondral and osteochondral lesions are in need of improvement, as these types of injuries lead to disability and worsen the quality of life in a high percentage of patients. The aim of this study was to develop a new bi-layered scaffold for osteochondral tissue regeneration through a "biomimetic" and "bioinspired" approach. For chondral regeneration, the scaffold was realized with an organic compound (type I collagen), while for the regeneration of the subchondral layer, bioactive magnesium-doped hydroxyapatite (Mg/HA) crystals were co-precipitated with the organic component of the scaffold...
January 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Shery Park, Hu Zhao, Mark Urata, Yang Chai
Repair of calvarial bony defects remains challenging for craniofacial surgeons. Injury experiments on animal calvarial bones are widely used to study healing mechanisms and test tissue engineering approaches. Previously we identified Gli1+ cells within the calvarial sutures as stem cells supporting calvarial bone turnover and injury repair. In this study, we tested the regenerative capacity of the suture region compared to other areas of calvarial bone. Injuries were made to mouse sagittal sutures or other areas of the calvarial bone at varying distances from the suture...
October 20, 2016: Stem Cells and Development
Colin Crist
Skeletal muscle is the most abundant tissue in our body, is responsible for generating the force required for movement and is also an important thermogenic organ. Skeletal muscle is an enigmatic tissue because, while on one hand, skeletal muscle regeneration after injury is arguably one of the best studied stem cell dependent regenerative processes, on the other hand, skeletal muscle is still subject to many degenerative disorders with few therapeutic options in the clinic. It is important to develop new regenerative medicine based therapies for skeletal muscle...
October 20, 2016: Journal of Pathology
James Holton, Mohamed Imam, Jonathan Ward, Martyn Snow
There has been great interest in bone marrow aspirate concentrate (BMAC) as a cost effective method in delivering mesenchymal stem cells (MSCs) to aid in the repair and regeneration of cartilage defects. Alongside MSCs, BMAC contains a range of growth factors and cytokines to support cell growth following injury. However, there is paucity of information relating to the basic science underlying BMAC and its exact biological role in supporting the growth and regeneration of chondrocytes. The focus of this review is the basic science underlying BMAC in relation to chondral damage and regeneration...
September 19, 2016: Orthopedic Reviews
Mohamed Bassiouni, Aurélie Dos Santos, Hasan X Avci, Hubert Löwenheim, Marcus Müller
The mature mammalian organ of Corti does not regenerate spontaneously after injury, mainly due to the absence of cell proliferation and the depletion of otic progenitors with age. The polycomb gene B lymphoma Mo-MLV insertion region 1 homolog (Bmi1) promotes proliferation and cell cycle progression in several stem cell populations. The cell cycle inhibitor p16ink4a has been previously identified as a downstream target of Bmi1. In this study, we show that Bmi1 is expressed in the developing inner ear. In the organ of Corti, Bmi1 expression is temporally regulated during embryonic and postnatal development...
2016: PloS One
Sahishnu Patel, Anthony P Gualtieri, Helen H Lu, William N Levine
Rotator cuff tear is a very common shoulder injury that often necessitates surgical intervention for repair. Despite advances in surgical techniques for rotator cuff repair, there is a high incidence of failure after surgery because of poor healing capacity attributed to many factors. The complexity of tendon-to-bone integration inherently presents a challenge for repair because of a large biomechanical mismatch between the tendon and bone and insufficient regeneration of native tissue, leading to the formation of fibrovascular scar tissue...
October 17, 2016: Annals of the New York Academy of Sciences
Hyun Sook Hong, Dae Yeon Hwang, Ju Hyeong Park, Suna Kim, Eun Jung Seo, Youngsook Son
Intestinal inflammation alters immune responses in the mucosa and destroys colon architecture, leading to serious diseases such as inflammatory bowel disease (IBD). Thus, regulation of inflammation is regarded as the ultimate therapy for intestinal disease. Substance-P (SP) is known to mediate proliferation, migration, and cellular senescence in a variety of cells. SP was found to mobilize stem cells from bone marrow to the site of injury and to suppress inflammatory responses by inducing regulatory T cells (Tregs) and M2 macrophages...
October 14, 2016: Cytokine
Kamil Kowalski, Aleksandra Kołodziejczyk, Maria Helena Sikorska, Jagoda Płaczkiewicz, Paulina Cichosz, Magdalena Kowalewska, Wladyslawa Streminska, Katarzyna Janczyk-Ilach, Marta Koblowska, Anna Fogtman, Roksana Iwanicka-Nowicka, Maria A Ciemerych, Edyta Brzoska
The skeletal muscle regeneration occurs due to the presence of tissue specific stem cells - satellite cells. These cells, localized between sarcolemma and basal lamina, are bound to muscle fibers and remain quiescent until their activation upon muscle injury. Due to pathological conditions, such as extensive injury or dystrophy, skeletal muscle regeneration is diminished. Among the therapies aiming to ameliorate skeletal muscle diseases are transplantations of the stem cells. In our previous studies we showed that Sdf-1 (stromal derived factor -1) increased migration of stem cells and their fusion with myoblasts in vitro...
October 13, 2016: Cell Adhesion & Migration
Nolan B Skop, Frances Calderon, Cheul H Cho, Chirag D Gandhi, Steven W Levison
Tissue engineering using stem cells is widely used to repair damaged tissues in diverse biological systems; however, this approach has met with less success in regenerating the central nervous system (CNS). In this study we optimized and characterized the surface chemistry of chitosan-based scaffolds for CNS repair. To maintain radial glial cell (RGC) character of primitive neural precursors, fibronectin was adsorbed to chitosan. The chitosan was further modified by covalently linking heparin using genipin, which then served as a linker to immobilize fibroblast growth factor-2 (FGF-2), creating a multifunctional film...
October 2016: Journal of Tissue Engineering and Regenerative Medicine
Babak Baban, Jun Yao Liu, Samuel Payne, Worku Abebe, Jack C Yu, Mahmood S Mozaffari
BACKGROUND: Recruitment of stem cells to sites of tissue injury constitutes an important mechanism aimed at tissue repair and regeneration. However, it is not clear how the diabetic milieu affects the viability of endogenous stem cells. Thus, we tested the hypothesis that diabetes mellitus is associated with increased apoptosis which, in turn, contributes to reduction in stem cells and the manifestation of type 2 diabetic nephropathy. METHODS: Sixteen-week-old male obese type 2 diabetic db/db mice, and their appropriate controls, were used for assessment of the status of endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs), and hematopoetic stem cells (HSCs) in the peripheral blood and renal tissue using specific cell markers...
2016: EPMA Journal
Carla Cunha, Catarina R Almeida, Maria Inês Almeida, Andreia M Silva, Maria Molinos, Sofia Lamas, Catarina L Pereira, Graciosa Q Teixeira, António T Monteiro, Susana G Santos, Raquel M Gonçalves, Mário A Barbosa
: : Cell therapies for intervertebral disc (IVD) regeneration presently rely on transplantation of IVD cells or stem cells directly to the lesion site. Still, the harsh IVD environment, with low irrigation and high mechanical stress, challenges cell administration and survival. In this study, we addressed systemic transplantation of allogeneic bone marrow mesenchymal stem cells (MSCs) intravenously into a rat IVD lesion model, exploring tissue regeneration via cell signaling to the lesion site...
October 11, 2016: Stem Cells Translational Medicine
Jairo A Diaz, Mauricio F Murillo, Jhonan A Mendoza, Ana M Barreto, Lina S Poveda, Lina K Sanchez, Laura C Poveda, Katherine T Mora
Emergent biological responses develop via unknown processes dependent on physical collision. In hypoxia, when the tissue architecture collapses but the geometric core is stable, actin cytoskeleton filament components emerge, revealing a hidden internal order that identifies how each molecule is reassembled into the original mold, using one common connection, i.e., a fractal self-similarity that guides the system from the beginning in reverse metamorphosis, with spontaneous self-assembly of past forms that mimics an embryoid phenotype...
2016: American Journal of Stem Cells
Sheryl Southard, Ju-Ryoung Kim, SiewHui Low, Richard W Tsika, Christoph Lepper
When unperturbed, somatic stem cells are poised to affect immediate tissue restoration upon trauma. Yet, little is known regarding the mechanistic basis controlling initial and homeostatic 'scaling' of stem cell pool sizes relative to their target tissues for effective regeneration. Here, we show that TEAD1-expressing skeletal muscle of transgenic mice features a dramatic hyperplasia of muscle stem cells (i.e. satellite cells, SCs) but surprisingly without affecting muscle tissue size. Super-numeral SCs attain a 'normal' quiescent state, accelerate regeneration, and maintain regenerative capacity over several injury-induced regeneration bouts...
October 11, 2016: ELife
Kunming Sun, Zheng Zhou, Xinxin Ju, Yang Zhou, Jiaojiao Lan, Dongdong Chen, Hongzhi Chen, Manli Liu, Lijuan Pang
BACKGROUND: Combined cell implantation has been widely applied in tissue engineering in recent years. In this meta-analysis, we aimed to establish whether the combined transplantation of mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) promotes angiogenesis and tissue repair, compared with transplantation of a single cell type, following tissue injury or during tissue regeneration. METHODS: The electronic databases PubMed, EMBASE, MEDLINE, Chinese Biomedical Literature, and China National Knowledge Infrastructure were searched in this systematic review and meta-analysis...
October 10, 2016: Stem Cell Research & Therapy
Mildred C Embree, Mo Chen, Serhiy Pylawka, Danielle Kong, George M Iwaoka, Ivo Kalajzic, Hai Yao, Chancheng Shi, Dongming Sun, Tzong-Jen Sheu, David A Koslovsky, Alia Koch, Jeremy J Mao
Tissue regeneration using stem cell-based transplantation faces many hurdles. Alternatively, therapeutically exploiting endogenous stem cells to regenerate injured or diseased tissue may circumvent these challenges. Here we show resident fibrocartilage stem cells (FCSCs) can be used to regenerate and repair cartilage. We identify FCSCs residing within the superficial zone niche in the temporomandibular joint (TMJ) condyle. A single FCSC spontaneously generates a cartilage anlage, remodels into bone and organizes a haematopoietic microenvironment...
October 10, 2016: Nature Communications
Kyle S Martin, Christopher D Kegelman, Kelley M Virgilio, Julianna A Passipieri, George J Christ, Silvia S Blemker, Shayn M Peirce
Numerous studies have pharmacologically modulated the muscle milieu in the hopes of promoting muscle regeneration; however, the timing and duration of these interventions are difficult to determine. This study utilized a combination of in silico and in vivo experiments to investigate how inflammation manipulation improves muscle recovery following injury. First, we measured macrophage populations following laceration injury in the rat tibialis anterior (TA). Then we calibrated an agent-based model (ABM) of muscle injury to mimic the observed inflammation profiles...
October 7, 2016: Annals of Biomedical Engineering
Harun Najib Noristani, Jean Charles Sabourin, Hassan Boukhaddaoui, Emilie Chan-Seng, Yannick Nicolas Gerber, Florence Evelyne Perrin
BACKGROUND: Neurons have intrinsic capability to regenerate after lesion, though not spontaneously. Spinal cord injury (SCI) causes permanent neurological impairments partly due to formation of a glial scar that is composed of astrocytes and microglia. Astrocytes play both beneficial and detrimental roles on axonal re-growth, however, their precise role after SCI is currently under debate. METHODS: We analyzed molecular changes in astrocytes at multiple stages after two SCI severities using cell-specific transcriptomic analyses...
October 6, 2016: Molecular Neurodegeneration
Yong-Seok Han, Jun Hee Lee, Yeo Min Yoon, Chul Won Yun, Hyunjin Noh, Sang Hun Lee
Mesenchymal stem cells (MSCs) are 'adult' multipotent cells that promote regeneration of injured tissues in vivo. However, differences in oxygenation levels between normoxic culture conditions (21% oxygen) and both the MSC niche (2-8% oxygen) and ischemic injury-induced oxidative stress conditions in vivo have resulted in low efficacy of MSC therapies in both pre-clinical and clinical studies. To address this issue, we examined the effectiveness of hypoxia preconditioning (2% oxygen) for enhancing the bioactivity and tissue-regenerative potential of adipose-derived MSCs...
October 6, 2016: Cell Death & Disease
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"