Read by QxMD icon Read

Systems Dynamics

Benoit Mahault, Avadh Saxena, Cristiano Nisoli
We propose a simple agent-based model on a network to conceptualize the allocation of limited wealth among more abundant expectations at the interplay of power, frustration, and initiative. Concepts imported from the statistical physics of frustrated systems in and out of equilibrium allow us to compare subjective measures of frustration and satisfaction to collective measures of fairness in wealth distribution, such as the Lorenz curve and the Gini index. We find that a completely libertarian, law-of-the-jungle setting, where every agent can acquire wealth from or lose wealth to anybody else invariably leads to a complete polarization of the distribution of wealth vs...
2017: PloS One
Sara Conti, Luca Perico, Florian Grahammer, Tobias B Huber
PURPOSE OF REVIEW: The podocyte slit diaphragm is probably the least understood component of the kidney filtration barrier. In this review, we aim to integrate the most recent findings on the molecular make-up and structural architecture of this specialized cell-cell junction into a current concept of glomerular filtration. RECENT FINDINGS: Analysis of cryopreserved mammalian tissue revealed a bipartite composition of the slit diaphragm. Single NEPH1 molecules span the lower part of the slit close to the glomerular basement membrane whereas NEPHRIN molecules are positioned in the apical part toward Bowman's space...
February 16, 2017: Current Opinion in Nephrology and Hypertension
Ruoshi Yuan, Xiaomei Zhu, Gaowei Wang, Site Li, Ping Ao
Cancer is a complex disease: its pathology cannot be properly understood in terms of independent players-genes, proteins, molecular pathways, or their simple combinations. This is similar to many-body physics of a condensed phase that many important properties are not determined by a single atom or molecule. The rapidly accumulating large 'omics' data also require a new mechanistic and global underpinning to organize for rationalizing cancer complexity. A unifying and quantitative theory was proposed by some of the present authors that cancer is a robust state formed by the endogenous molecular-cellular network, which is evolutionarily built for the developmental processes and physiological functions...
February 17, 2017: Reports on Progress in Physics
Guang Ling, Zhi-Hong Guan, Bin Hu, Qiang Lai, Yonghong Wu
Many biological systems have the conspicuous property to present more than one stable state and diverse rhythmic behaviors. A closed relationship between these complex dynamic behaviors and cyclic genetic structures has been witnessed by pioneering works. In this paper, a typical structure of inhibitory coupled cyclic genetic networks is introduced to further enlighten this mechanism of stability and biological rhythms of living cells. The coupled networks consist two identical cyclic genetic subnetworks, which inhibit each other directly...
February 14, 2017: IEEE Transactions on Nanobioscience
Isaac Cho, Jialei Li, Zachary Wartell
Multi-scale virtual environments contain geometric details ranging over several orders of magnitude and typically employ out-of-core rendering techniques. When displayed in virtual reality systems this entails using a 7 degree-of-freedom (DOF) view model where view scale is a separate 7th DOF in addition to 6DOF view pose. Dynamic adjustment of this and other view parameters become very important to usability. In this paper, we evaluate how two adjustment techniques interact with uni- and bi-manual 7 degree-of-freedom navigation in DesktopVR and a CAVE...
February 13, 2017: IEEE Transactions on Visualization and Computer Graphics
Karthikeyan Rajagopal, Sivasubramanya Nadar Balakrishnan, Jerome R Busemeyer
In this paper, an offline approximate dynamic programming approach using neural networks is proposed for solving a class of finite horizon stochastic optimal control problems. There are two approaches available in the literature, one based on stochastic maximum principle (SMP) formalism and the other based on solving the stochastic Hamilton-Jacobi-Bellman (HJB) equation. However, in the presence of noise, the SMP formalism becomes complex and results in having to solve a couple of backward stochastic differential equations...
March 2017: IEEE Transactions on Neural Networks and Learning Systems
Tomoko Hyodo, Norihisa Yada, Masatoshi Hori, Osamu Maenishi, Peter Lamb, Kosuke Sasaki, Minori Onoda, Masatoshi Kudo, Teruhito Mochizuki, Takamichi Murakami
Purpose To assess the clinical accuracy and reproducibility of liver fat quantification with the multimaterial decomposition (MMD) algorithm, comparing the performance of MMD with that of magnetic resonance (MR) spectroscopy by using liver biopsy as the reference standard. Materials and Methods This prospective study was approved by the institutional ethics committee, and patients provided written informed consent. Thirty-three patients suspected of having hepatic steatosis underwent non-contrast material-enhanced and triple-phase dynamic contrast-enhanced dual-energy computed tomography (CT) (80 and 140 kVp) and single-voxel proton MR spectroscopy within 30 days before liver biopsy...
February 17, 2017: Radiology
Julian J McMorrow, Cory D Cress, William A Gaviria Rojas, Michael L Geier, Tobin J Marks, Mark C Hersam
Increasingly complex demonstrations of integrated circuit elements based on semiconducting single-walled carbon nanotubes (SWCNTs) mark the maturation of this technology for use in next-generation electronics. In particular, organic materials have recently been leveraged as dopant and encapsulation layers to enable stable SWCNT-based rail-to-rail, low-power complementary metal-oxide-semiconductor (CMOS) logic circuits. To explore the limits of this technology in extreme environments, here we study total ionizing dose (TID) effects in enhancement-mode SWCNT-CMOS inverters that employ organic doping and encapsulation layers...
February 17, 2017: ACS Nano
Kate L Parent, Daniel F Hill, Lindsey M Crown, Jean-Paul Wiegand, Kathleen F Gies, Michael A Miller, Christopher W Atcherley, Michael L Heien, Stephen L Cowen
Complex behaviors depend on the coordination of the activities of ensembles of neurons and the release of neuromodulators such as dopamine. The mechanisms underlying such coordination are not well-understood due to a lack of instrumentation for combined and real-time monitoring of neuromodulator release and the activities of large ensembles of neurons. Here we describe a measurement platform that allows for the combined monitoring of electrophysiology from a high-density electrode array and dopamine dynamics from a carbon-fiber microelectrode...
February 17, 2017: Analytical Chemistry
Mustafa Çavuşoğlu, Ronald Mooiweer, Klaas P Pruessmann, Shaihan J Malik
In parallel RF pulse design, peak RF magnitudes and specific absorption rate levels are critical concerns in the hardware and safety limits. The variable rate selective excitation (VERSE) method is an efficient technique to limit the peak RF power by applying a local-only RF and gradient waveform reshaping while retaining the on-resonance profile. The accuracy of the excitation performed by the VERSEd RF and gradient waveforms strictly depends on the performance of the employed hardware. Any deviation from the nominal gradient fields as a result of frequency dependent system imperfections violates the VERSE condition similarly to off-resonance effects, leading to significant excitation errors and the RF pulse not converging to the targeted peak RF power...
February 17, 2017: NMR in Biomedicine
Siamak P Nejad-Davarani, Hassan Bagher-Ebadian, James R Ewing, Douglas C Noll, Tom Mikkelsen, Michael Chopp, Quan Jiang
In this paper, we introduce a novel model of the brain vascular system, which is developed based on laws of fluid dynamics and vascular morphology. This model is used to address dispersion and delay of the arterial input function (AIF) at different levels of the vascular structure and to estimate the local AIF in DCE images. We developed a method based on the simplex algorithm and Akaike information criterion to estimate the likelihood of the contrast agent concentration signal sampled in DCE images belonging to different layers of the vascular tree or being a combination of different signal levels from different nodes of this structure...
February 17, 2017: NMR in Biomedicine
Siamak P Nejad-Davarani, Hassan Bagher-Ebadian, James R Ewing, Douglas C Noll, Tom Mikkelsen, Michael Chopp, Quan Jiang
One of the key elements in dynamic contrast enhanced (DCE) image analysis is the arterial input function (AIF). Traditionally, in DCE studies a global AIF sampled from a major artery or vein is used to estimate the vascular permeability parameters; however, not addressing dispersion and delay of the AIF at the tissue level can lead to biased estimates of these parameters. To find less biased estimates of vascular permeability parameters, a vascular model of the cerebral vascular system is proposed that considers effects of dispersion of the AIF in the vessel branches, as well as extravasation of the contrast agent (CA) to the extravascular-extracellular space...
February 17, 2017: NMR in Biomedicine
Clara Moreno-Fenoll, Matteo Cavaliere, Esteban Martínez-García, Juan F Poyatos
Bacterial populations whose growth depends on the cooperative production of public goods are usually threatened by the rise of cheaters that do not contribute but just consume the common resource. Minimizing cheater invasions appears then as a necessary mechanism to maintain these populations. However, that invasions result instead in the persistence of cooperation is a prospect that has yet remained largely unexplored. Here, we show that the demographic collapse induced by cheaters in the population can actually contribute to the rescue of cooperation, in a clear illustration of how ecology and evolution can influence each other...
February 13, 2017: Scientific Reports
Wei-Min Zhang, Ping-Yuan Lo, Heng-Na Xiong, Matisse Wei-Yuan Tu, Franco Nori
This corrects the article DOI: 10.1103/PhysRevLett.109.170402.
February 3, 2017: Physical Review Letters
M Radu, K Kremer
We study the crystal growth in binary Lennard-Jones mixtures by molecular dynamics simulations. Growth dynamics, the structure of the liquid-solid interfaces as well as droplet incorporation into the crystal vary with solution properties. For demixed systems we observe a strongly enhanced crystal growth at the cost of enclosed impurities. Furthermore, we find different interface morphologies depending on solubility. We relate our observations to growth mechanisms based on the Gibbs-Thomson effect as well as to predictions of the Kardar-Parisi-Zhang theory in 2+1 dimensions...
February 3, 2017: Physical Review Letters
Vítor V Vasconcelos, Fernando P Santos, Francisco C Santos, Jorge M Pacheco
Studying dynamical phenomena in finite populations often involves Markov processes of significant mathematical and/or computational complexity, which rapidly becomes prohibitive with increasing population size or an increasing number of individual configuration states. Here, we develop a framework that allows us to define a hierarchy of approximations to the stationary distribution of general systems that can be described as discrete Markov processes with time invariant transition probabilities and (possibly) a large number of states...
February 3, 2017: Physical Review Letters
Pietro Liuzzo-Scorpo, Wojciech Roga, Leonardo A M Souza, Nadja K Bernardes, Gerardo Adesso
We investigate the dynamics of Gaussian states of continuous variable systems under Gaussianity-preserving channels. We introduce a hierarchy of such evolutions encompassing Markovian and weakly and strongly non-Markovian processes and provide simple criteria to distinguish between the classes, based on the degree of positivity of intermediate Gaussian maps. We present an intuitive classification of all one-mode Gaussian channels according to their non-Markovianity degree and show that weak non-Markovianity has an operational significance, as it leads to a temporary phase-insensitive amplification of Gaussian inputs beyond the fundamental quantum limit...
February 3, 2017: Physical Review Letters
Andrew Lucas, Snir Gazit, Daniel Podolsky, William Witczak-Krempa
We study high-frequency response functions, notably the optical conductivity, in the vicinity of quantum critical points (QCPs) by allowing for both detuning from the critical coupling and finite temperature. We consider general dimensions and dynamical exponents. This leads to a unified understanding of sum rules. In systems with emergent Lorentz invariance, powerful methods from quantum field theory allow us to fix the high-frequency response in terms of universal coefficients. We test our predictions analytically in the large-N O(N) model and using the gauge-gravity duality and numerically via quantum Monte Carlo simulations on a lattice model hosting the interacting superfluid-insulator QCP...
February 3, 2017: Physical Review Letters
Jessie R Maxwell, Tracylyn R Yellowhair, Akosua Y Oppong, Jenny E Camacho, Jean R Lowe, Lauren L Jantzie, Robin K Ohls
Prematurity remains the major cause of neonatal morbidity and mortality, with 15 million preterm births occurring worldwide in 2010. Infants born less than 37 weeks gestation are at high risk of abnormal neurodevelopmental outcomes, given that the central nervous system is extremely sensitive to an abnormal intra- and extra-uterine environment. Children born preterm have multiple neurodevelopmental sequelae involving dynamic and complex cognitive deficits. Former preterm infants have difficulty with each domain of cognition, including executive function, language, learning and memory, complex attention, perceptual-motor function and social cognition when compared to children born at term...
February 17, 2017: Minerva Pediatrica
Shuangshuang Xiao, Wei Zhang, Yingying Ye, Jie Zhao, Kelin Wang
Understanding the effect of land use on soil carbon, nitrogen, and microbial activity associated with aggregates is critical for thorough comprehension of the C and N dynamics of karst landscapes/ecosystems. We monitored soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC), and Cmic: Corg ratio in large macro- (>2 mm), small macro- (0.25-2 mm), and micro- (0.053-0.25 mm) aggregates to determine the changes in soil properties under different land uses in the karst area of Southwest China...
February 17, 2017: Scientific Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"