Read by QxMD icon Read


Mauricio J Grisolia, Diego A Peralta, Hugo A Valdez, Julieta Barchiesi, Diego F Gomez-Casati, María V Busi
Starch binding domains of starch synthase III from Arabidopsis thaliana (SBD123) binds preferentially to cell wall polysaccharides rather than to starch in vitro. Transgenic plants overexpressing SBD123 in the cell wall are larger than wild type. Cell wall components are altered in transgenic plants. Transgenic plants are more susceptible to digestion than wild type and present higher released glucose content. Our results suggest that the transgenic plants have an advantage for the production of bioethanol in terms of saccharification of essential substrates...
October 21, 2016: Plant Molecular Biology
Chaoyun Hao, Zhiqiang Xia, Rui Fan, Lehe Tan, Lisong Hu, Baoduo Wu, Huasong Wu
BACKGROUND: Piper nigrum L., or "black pepper", is an economically important spice crop in tropical regions. Black pepper production is markedly affected by foot rot disease caused by Phytophthora capsici, and genetic improvement of black pepper is essential for combating foot rot diseases. However, little is known about the mechanism of anti- P. capsici in black pepper. The molecular mechanisms underlying foot rot susceptibility were studied by comparing transcriptome analysis between resistant (Piper flaviflorum) and susceptible (Piper nigrum cv...
October 21, 2016: BMC Genomics
Paola Ferrini, Camila A Rezende, Roberto Rinaldi
Catalytic upstream biorefining (CUB) encompasses processes for plant biomass deconstruction through the early-stage conversion of lignin by the action of a hydrogenation catalyst. CUB processes produce lignin as an extensively depolymerised product (i.e., a viscous lignin oil) and render highly delignified pulps. In this report, we examine CUB from the pulp perspective. Notably, Raney Ni plays an indirect role in the processes that occur within the lignocellulose matrix. As there are negligible points of contact between the poplar wood chips and Raney Ni, the catalyst action is limited to the species leached from the matrix into the liquor...
October 21, 2016: ChemSusChem
Xiaoming Huang, Jiadong Zhu, Tamás I Korányi, Michael D Boot, Emiel J M Hensen
Adding value to lignin, the most complex and recalcitrant fraction in lignocellulosic biomass, is highly relevant to costefficient operation of biorefineries. We report the use of homogeneous metal triflates to rapidly release lignin from biomass. Combined with metal-catalyzed hydrogenolysis, the process separates woody biomass into few lignin-derived alkylmethoxyphenols and cellulose under mild conditions. Model compound studies show the unique catalytic properties of metal triflates in cleaving lignin-carbohydrate interlinkages...
October 21, 2016: ChemSusChem
Bingxian Yang, Qijie Guan, Jingkui Tian, Setsuko Komatsu
: High level of UV-B irradiation followed by dark treatment (HUV-B+D) causes accumulation of secondary metabolites in Clematis terniflora DC. To investigate the response mechanism under HUV-B+D, transcriptomic and proteomic analyses were performed in leaves of C. terniflora. The number of genes related to tetrapyrrole synthesis, amino acid metabolism, tricarboxylic acid cycle, and mitochondrial electron transport chains was hierarchically changed in leaves of C. terniflora under HUV-B+D...
October 17, 2016: Journal of Proteomics
Johannes G de Vries
Several strategies can be chosen to convert renewable resources into chemicals. In this account, I exemplify the route that starts with so-called platform chemicals; these are relatively simple chemicals that can be produced in high yield, directly from renewable resources, either via fermentation or via chemical routes. They can be converted into the existing bulk chemicals in a very efficient manner using multistep catalytic conversions. Two examples are given of the conversion of sugars into nylon intermediates...
October 20, 2016: Chemical Record: An Official Publication of the Chemical Society of Japan ... [et Al.]
Kohtaro Watanabe, Hirokazu Takahashi, Saori Sato, Shunsaku Nishiuchi, Fumie Omori, Al Imran Malik, Timothy David Colmer, Yoshiro Mano, Mikio Nakazono
A radial oxygen loss (ROL) barrier in roots of waterlogging-tolerant plants promotes oxygen movement via aerenchyma to the root tip, and impedes soil phytotoxin entry. The molecular mechanism and genetic regulation of ROL barrier formation are largely unknown. Zea nicaraguensis, a waterlogging-tolerant wild relative of maize (Z. mays ssp. mays), forms a tight ROL barrier in its roots when waterlogged. We used Z. nicaraguensis chromosome segment introgression lines (ILs) in maize (inbred line Mi29) to elucidate the chromosomal region involved in regulating root ROL barrier formation...
October 20, 2016: Plant, Cell & Environment
Daniel Forberg, Tobias Schwob, Muhammad Zaheer, Martin Friedrich, Nobuyoshi Miyajima, Rhett Kempe
Large-scale energy storage and the utilization of biomass as a sustainable carbon source are global challenges of this century. The reversible storage of hydrogen covalently bound in chemical compounds is a particularly promising energy storage technology. For this, compounds that can be sustainably synthesized and that permit high-weight% hydrogen storage would be highly desirable. Herein, we report that catalytically modified lignin, an indigestible, abundantly available and hitherto barely used biomass, can be harnessed to reversibly store hydrogen...
October 20, 2016: Nature Communications
Shuangshuang Zhao, Lei Zhao, Fengxia Liu, Yongzhen Wu, Zuofeng Zhu, Chuanqing Sun, Lubin Tan
Grain yield in rice (Oryza sativa L.) is closely related to leaf and flower development. Coordinative regulation of leaf, pollen, and seed development in rice as a critical biological and agricultural question should to be addressed. Here we identified two allelic rice mutants with narrow and semi-rolled leaves, named narrow and rolled leaf 2-1 (nrl2-1) and nrl2-2. Map-based molecular cloning revealed that NRL2 encodes a novel protein with unknown biochemical function. The mutation of NRL2 caused pleiotropic effects, including a reduction in the number of longitudinal veins, defective abaxial sclerenchymatous cell differentiation, abnormal tapetum degeneration and microspore development, and the formation of more slender seeds compared with the wild type (WT)...
October 20, 2016: Journal of Integrative Plant Biology
Lakshmi Kasirajan, Kalaivaani Aruchamy, Prathima P Thirugnanasambandam, Selvi Athiappan
Sugarcane (Saccharum spp.) is one of the highest biomass-producing plant and the best lignocellulosic feedstock for ethanol production. To achieve more efficient conversion of biomass to ethanol, a better understanding of the main factors affecting biomass recalcitrance is needed. Therefore, with this objective, here, we report a systematic study on lignin content, deposition, identification, and cloning of genes involved in lignin biosynthesis and their differential expression in five sugarcane clones, EC11003, EC11010, IK 76-91, IK 76-99, and Co 86032...
October 19, 2016: Applied Biochemistry and Biotechnology
Qingqi Yan, Yumei Wang, Wawat Rodiahwati, Antje Spiess, Michael Modigell
Screw press processing of biomass can be considered as a suitable mechanically based pretreatment for biofuel production since it disrupts the structure of lignocellulosic biomass with high shear and pressure forces. The combination with chemical treatment has been suggested to increase the conversion of lignocellulosic biomass to fermentable sugars. Within the study, the synergetic effect of alkaline (sodium hydroxide, NaOH) soaking and screw press pretreatment on wheat straw was evaluated based on, e.g., sugar recovery and energy efficiency...
October 19, 2016: Bioprocess and Biosystems Engineering
Jiangshan Ma, Keke Zhang, Mei Huang, Stanton B Hector, Bin Liu, Chunyi Tong, Qian Liu, Jiarui Zeng, Yan Gao, Ting Xu, Ying Liu, Xuanming Liu, Yonghua Zhu
BACKGROUND: Lignocellulolytic bacteria have revealed to be a promising source for biofuel production, yet the underlying mechanisms are still worth exploring. Our previous study inferred that the highly efficient lignocellulose degradation by bacterium Pantoea ananatis Sd-1 might involve Fenton chemistry (Fe(2+) + H2O2 + H(+) → Fe(3+) + OH· + H2O), similar to that of white-rot and brown-rot fungi. The aim of this work is to investigate the existence of this Fenton-based oxidation mechanism in the rice straw degradation process of P...
2016: Biotechnology for Biofuels
Ferdinand X Choong, Marcus Bäck, Svava E Steiner, Keira Melican, K Peter R Nilsson, Ulrica Edlund, Agneta Richter-Dahlfors
Enabling technologies for efficient use of the bio-based feedstock are crucial to the replacement of oil-based products. We investigated the feasibility of luminescent conjugated oligothiophenes (LCOs) for non-destructive, rapid detection and quality assessment of lignocellulosic components in complex biomass matrices. A cationic pentameric oligothiophene denoted p-HTEA (pentamer hydrogen thiophene ethyl amine) showed unique binding affinities to cellulose, lignin, hemicelluloses, and cellulose nanofibrils in crystal, liquid and paper form...
October 19, 2016: Scientific Reports
Steven D Karlen, Chengcheng Zhang, Matthew L Peck, Rebecca A Smith, Dharshana Padmakshan, Kate E Helmich, Heather C A Free, Seonghee Lee, Bronwen G Smith, Fachuang Lu, John C Sedbrook, Richard Sibout, John H Grabber, Troy M Runge, Kirankumar S Mysore, Philip J Harris, Laura E Bartley, John Ralph
Angiosperms represent most of the terrestrial plants and are the primary research focus for the conversion of biomass to liquid fuels and coproducts. Lignin limits our access to fibers and represents a large fraction of the chemical energy stored in plant cell walls. Recently, the incorporation of monolignol ferulates into lignin polymers was accomplished via the engineering of an exotic transferase into commercially relevant poplar. We report that various angiosperm species might have convergently evolved to natively produce lignins that incorporate monolignol ferulate conjugates...
October 2016: Science Advances
Udaya C Kalluri, Raja S Payyavula, Jessy L Labbé, Nancy Engle, Garima Bali, Sara S Jawdy, Robert W Sykes, Mark Davis, Arthur Ragauskas, Gerald A Tuskan, Timothy J Tschaplinski
A greater understanding of the genetic regulation of plant cell wall remodeling and the impact of modified cell walls on plant performance is important for the development of sustainable biofuel crops. Here, we studied the impact of down-regulating KORRIGAN-like cell wall biosynthesis genes, belonging to the endo-β-1,4-glucanase gene family, on Populus growth, metabolism and the ability to interact with symbiotic microbes. The reductions in cellulose content and lignin syringyl-to-guaiacyl unit ratio, and increase in cellulose crystallinity of cell walls of PdKOR RNAi plants corroborated the functional role of PdKOR in cell wall biosynthesis...
2016: Frontiers in Plant Science
Brian Weselowski, Naeem Nathoo, Alexander William Eastman, Jacqueline MacDonald, Ze-Chun Yuan
BACKGROUND: Paenibacillus polymyxa is a plant-growth promoting rhizobacterium that could be exploited as an environmentally friendlier alternative to chemical fertilizers and pesticides. Various strains have been isolated that can benefit agriculture through antimicrobial activity, nitrogen fixation, phosphate solubilization, plant hormone production, or lignocellulose degradation. However, no single strain has yet been identified in which all of these advantageous traits have been confirmed...
October 18, 2016: BMC Microbiology
Shubhangi Rastogi, Raman Soni, Jaspreet Kaur, Sanjeev Kumar Soni
A natural variant of Pyrenophora phaeocomes isolated from natural biodiversity was able to grow on various agricultural residues by co-producing laccase, xylanase and mannanase. Solid state fermentation of rice straw induced the highest productivities corresponding to 10,859.51±46.74, 22.01±1.00 and 10.45±0.128IUgds(-1) for laccase, xylanase and mannanase respectively after 4days. Besides producing the ligno-hemicellulolytic enzyme cocktail, 40days cultivation of P. phaeocomes S-1 on rice straw brought about the 63 and 51% degradation of lignin and hemicellulose...
October 5, 2016: Bioresource Technology
Derong Lin, Mengshi Xiao, Jingjing Zhao, Zhuohao Li, Baoshan Xing, Xindan Li, Maozhu Kong, Liangyu Li, Qing Zhang, Yaowen Liu, Hong Chen, Wen Qin, Hejun Wu, Saiyan Chen
In this paper, the biosynthesis process of phenolic compounds in plants is summarized, which include the shikimate, pentose phosphate and phenylpropanoid pathways. Plant phenolic compounds can act as antioxidants, structural polymers (lignin), attractants (flavonoids and carotenoids), UV screens (flavonoids), signal compounds (salicylic acid, flavonoids) and defense response chemicals (tannins, phytoalexins). From a human physiological standpoint, phenolic compounds are vital in defense responses, such as anti-aging, anti-inflammatory, antioxidant and anti-proliferative activities...
October 15, 2016: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
Carolyn N Haarmeyer, Matthew D Smith, Shishir Chundawat, Deanne Sammond, Timothy A Whitehead
Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue towards energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption...
October 17, 2016: Biotechnology and Bioengineering
Anne-Laure Chateigner-Boutin, José J Ordaz-Ortiz, Camille Alvarado, Brigitte Bouchet, Sylvie Durand, Yves Verhertbruggen, Yves Barrière, Luc Saulnier
Cell walls are comprised of networks of entangled polymers that differ considerably between species, tissues and developmental stages. The cell walls of grasses, a family that encompasses major crops, contain specific polysaccharide structures such as xylans substituted with feruloylated arabinose residues. Ferulic acid is involved in the grass cell wall assembly by mediating linkages between xylan chains and between xylans and lignins. Ferulic acid contributes to the physical properties of cell walls, it is a hindrance to cell wall degradability (thus biomass conversion and silage digestibility) and may contribute to pest resistance...
2016: Frontiers in Plant Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"