Diana Guallar, Xianju Bi, Jose Angel Pardavila, Xin Huang, Carmen Saenz, Xianle Shi, Hongwei Zhou, Francesco Faiola, Junjun Ding, Phensinee Haruehanroengra, Fan Yang, Dan Li, Carlos Sanchez-Priego, Arven Saunders, Feng Pan, Victor Julian Valdes, Kevin Kelley, Miguel G Blanco, Lingyi Chen, Huayan Wang, Jia Sheng, Mingjiang Xu, Miguel Fidalgo, Xiaohua Shen, Jianlong Wang
Ten-eleven translocation (TET) proteins play key roles in the regulation of DNA-methylation status by oxidizing 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), which can both serve as a stable epigenetic mark and participate in active demethylation. Unlike the other members of the TET family, TET2 does not contain a DNA-binding domain, and it remains unclear how it is recruited to chromatin. Here we show that TET2 is recruited by the RNA-binding protein Paraspeckle component 1 (PSPC1) through transcriptionally active loci, including endogenous retroviruses (ERVs) whose long terminal repeats (LTRs) have been co-opted by mammalian genomes as stage- and tissue-specific transcriptional regulatory modules...
March 2018: Nature Genetics