keyword
MENU ▼
Read by QxMD icon Read
search

5mC

keyword
https://www.readbyqxmd.com/read/28531315/the-interaction-between-cytosine-methylation-and-processes-of-dna-replication-and-repair-shape-the-mutational-landscape-of-cancer-genomes
#1
Rebecca C Poulos, Jake Olivier, Jason W H Wong
Methylated cytosines (5mCs) are frequently mutated in the genome. However, no studies have yet comprehensively analysed mutation-methylation associations across cancer types. Here we analyse 916 cancer genomes, together with tissue type-specific methylation and replication timing data. We describe a strong mutation-methylation association across colorectal cancer subtypes, most interestingly in samples with microsatellite instability (MSI) or Polymerase epsilon (POLE) exonuclease domain mutations. By analysing genomic regions with differential mismatch repair (MMR) efficiency, we suggest a possible role for MMR in the correction of 5mC deamination events, potentially accounting for the high rate of 5mC mutation accumulation in MSI tumours...
May 22, 2017: Nucleic Acids Research
https://www.readbyqxmd.com/read/28529766/genome-wide-profiling-of-dna-5-hydroxymethylcytosine-during-rat-sertoli-cell-maturation
#2
Miriam Landfors, Jostein Johansen, Jan Magnus Aronsen, Cathrine Broberg Vågbø, Louis C Doré, Chuan He, Ivar Sjaastad, Pål Sætrom, Péter Fedorcsák, John Arne Dahl, Håvard Aanes, Markus Fußer, Arne Klungland
Sertoli cells have dual roles during the cells' lifetime. In the juvenile mammal, Sertoli cells proliferate and create the structure of the testis, and during puberty they cease to proliferate and take on the adult role of supporting germ cells through spermatogenesis. Accordingly, many genes expressed in Sertoli cells during testis formation are repressed during spermatogenesis. 5-Hydroxymethylcytosine (5hmC) is a DNA modification enzymatically generated from 5mC and present in all investigated mammalian tissues at varying levels...
2017: Cell Discovery
https://www.readbyqxmd.com/read/28520399/an-immunofluorescence-imaging-strategy-for-evaluation-of-the-accessibility-of-dna-5-hydroxymethylcytosine-in-chromatins
#3
Shangwei Zhong, Zhe Li, Ting Jiang, Xiangjun Li, Hailin Wang
DNA 5-hydroxymethylcytosine (5hmC) is an important epigenetic modification found in various mammalian cells. Immunofluorescence imaging analysis essentially provides visual pictures to the abundance and distribution of DNA 5hmC in single cells. However, nuclear DNA is usually wrapped around nucleosomes and packaged into chromatins, and further bound with many functional proteins. These physiologically relevant events would generate barriers to the anti-5hmC antibody to selectively recognize 5hmC in DNA. By taking advantage of these naturally generated barriers, here we present a strategy to evaluate the accessibility of DNA 5hmC in chromatins in situ...
May 18, 2017: Analytical Chemistry
https://www.readbyqxmd.com/read/28516982/colorimetric-and-electrochemical-quantification-of-global-dna-methylation-using-a-methyl-cytosine-specific-antibody
#4
Md Hakimul Haque, Ripon Bhattacharjee, Md Nazmul Islam, Vinod Gopalan, Nam-Trung Nguyen, Alfred K Lam, Muhammad J A Shiddiky
We report a simple colorimetric (naked-eye) and electrochemical method for the rapid, sensitive and specific quantification of global methylation levels using only 25 ng of input DNA. Our approach utilises a three-step strategy; (i) initial adsorption of the extracted, purified and denatured bisulfite-treated DNA on a screen-printed gold electrode (SPE-Au), (ii) immuno-recognition of methylated DNA using a horseradish peroxidase (HRP)-conjugated methylcytosine (HRP-5mC) antibody and (iii) subsequent colorimetric detection by the enzymatic oxidation of 3,3',5,5'-tetramethylbenzidin (TMB)/H2O2 which generated a blue-coloured product in the presence of methylated DNA and HRP-5mC immunocomplex...
May 18, 2017: Analyst
https://www.readbyqxmd.com/read/28510608/the-biomphalaria-glabrata-dna-methylation-machinery-displays-spatial-tissue-expression-is-differentially-active-in-distinct-snail-populations-and-is-modulated-by-interactions-with-schistosoma-mansoni
#5
Kathrin K Geyer, Umar H Niazi, David Duval, Céline Cosseau, Chad Tomlinson, Iain W Chalmers, Martin T Swain, David J Cutress, Utibe Bickham-Wright, Sabrina E Munshi, Christoph Grunau, Timothy P Yoshino, Karl F Hoffmann
BACKGROUND: The debilitating human disease schistosomiasis is caused by infection with schistosome parasites that maintain a complex lifecycle alternating between definitive (human) and intermediate (snail) hosts. While much is known about how the definitive host responds to schistosome infection, there is comparably less information available describing the snail's response to infection. METHODOLOGY/PRINCIPLE FINDINGS: Here, using information recently revealed by sequencing of the Biomphalaria glabrata intermediate host genome, we provide evidence that the predicted core snail DNA methylation machinery components are associated with both intra-species reproduction processes and inter-species interactions...
May 2017: PLoS Neglected Tropical Diseases
https://www.readbyqxmd.com/read/28499883/the-role-of-5-hydroxymethylcytosine-in-development-aging-and-age-related-diseases
#6
REVIEW
V López, A F Fernández, M F Fraga
DNA methylation at the fifth position of cytosines (5mC) represents a major epigenetic modification in mammals. The recent discovery of 5-hydroxymethylcytosine (5hmC), resulting from 5mC oxidation, is redefining our view of the epigenome, as multiple studies indicate that 5hmC is not simply an intermediate of DNA demethylation, but a genuine epigenetic mark that may play an important functional role in gene regulation. Currently, the availability of platforms that discriminates between the presence of 5mC and 5hmC at single-base resolution is starting to shed light on the functions of 5hmC...
May 10, 2017: Ageing Research Reviews
https://www.readbyqxmd.com/read/28484589/idh1-or-2-mutations-do-not-predict-outcome-and-do-not-cause-loss-of-5-hydroxymethylcytosine-or-altered-histone-modifications-in-central-chondrosarcomas
#7
Arjen H G Cleven, Johnny Suijker, Georgios Agrogiannis, Inge H Briaire-de Bruijn, Norma Frizzell, Attje S Hoekstra, Pauline M Wijers-Koster, Anne-Marie Cleton-Jansen, Judith V M G Bovée
BACKGROUND: Mutations in isocitrate dehydrogenase (IDH)1 or -2 are found in ~50% of conventional central chondrosarcomas and in up to 87% of their assumed benign precursors enchondromas. The mutant enzyme acquires the activity to convert α-ketoglutarate into the oncometabolite d-2-hydroxyglutarate (d-2-HG), which competitively inhibits α-ketoglutarate dependent enzymes such as histone- and DNA demethylases. METHODS: We therefore evaluated the effect of IDH1 or -2 mutations on histone modifications (H3K4me3, H3K9me3 and H3K27me3), chromatin remodeler ATRX expression, DNA modifications (5-hmC and 5-mC), and TET1 subcellular localization in a genotyped cohort (IDH, succinate dehydrogenase (SDH) and fumarate hydratase (FH)) of enchondromas and central chondrosarcomas (n = 101) using immunohistochemistry...
2017: Clinical Sarcoma Research
https://www.readbyqxmd.com/read/28467834/nickel-ii-inhibits-tet-mediated-5-methylcytosine-oxidation-by-high-affinity-displacement-of-the-cofactor-iron-ii
#8
Ruichuan Yin, Jiezhen Mo, Jiayin Dai, Hailin Wang
Ten-eleven translocation (Tet) family proteins are Fe(II)- and 2-oxoglutarate-dependent dioxygenases that regulate the dynamics of DNA methylation by catalyzing the oxidation of DNA 5-methylcytosine (5mC). To exert physiologically important functions, redox-active iron chelated in the catalytic center of Tet proteins directly involves the oxidation of the multiple substrates. To understand the function and interaction network of Tet dioxygenases, it is interesting to obtain high affinity and a specific inhibitor...
May 8, 2017: ACS Chemical Biology
https://www.readbyqxmd.com/read/28459455/dna-sequence-homology-induces-cytosine-to-thymine-mutation-by-a-heterochromatin-related-pathway-in-neurospora
#9
Eugene Gladyshev, Nancy Kleckner
Most eukaryotic genomes contain substantial amounts of repetitive DNA organized in the form of constitutive heterochromatin and associated with repressive epigenetic modifications, such as H3K9me3 and C5 cytosine methylation (5mC). In the fungus Neurospora crassa, H3K9me3 and 5mC are catalyzed, respectively, by a conserved SUV39 histone methyltransferase, DIM-5, and a DNMT1-like cytosine methyltransferase, DIM-2. Here we show that DIM-2 can also mediate repeat-induced point mutation (RIP) of repetitive DNA in N...
May 1, 2017: Nature Genetics
https://www.readbyqxmd.com/read/28433420/dna-methylation-program-in-normal-and-alcohol-induced-thinning-cortex
#10
Nail Can Öztürk, Marisol Resendiz, Hakan Öztürk, Feng C Zhou
While cerebral underdevelopment is a hallmark of fetal alcohol spectrum disorders (FASD), the mechanism(s) guiding the broad cortical neurodevelopmental deficits are not clear. DNA methylation is known to regulate early development and tissue specification through gene regulation. Here, we examined DNA methylation in the onset of alcohol-induced cortical thinning in a mouse model of FASD. C57BL/6 (B6) mice were administered a 4% alcohol (v/v) liquid diet from embryonic (E) days 7-16, and their embryos were harvested at E17, along with isocaloric liquid diet and lab chow controls...
May 2017: Alcohol
https://www.readbyqxmd.com/read/28428825/comprehensive-evaluation-of-genome-wide-5-hydroxymethylcytosine-profiling-approaches-in-human-dna
#11
Ksenia Skvortsova, Elena Zotenko, Phuc-Loi Luu, Cathryn M Gould, Shalima S Nair, Susan J Clark, Clare Stirzaker
BACKGROUND: The discovery that 5-methylcytosine (5mC) can be oxidized to 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation (TET) proteins has prompted wide interest in the potential role of 5hmC in reshaping the mammalian DNA methylation landscape. The gold-standard bisulphite conversion technologies to study DNA methylation do not distinguish between 5mC and 5hmC. However, new approaches to mapping 5hmC genome-wide have advanced rapidly, although it is unclear how the different methods compare in accurately calling 5hmC...
2017: Epigenetics & Chromatin
https://www.readbyqxmd.com/read/28413450/fetal-testis-organ-culture-reproduces-the-dynamics-of-epigenetic-reprogramming-in-rat-gonocytes
#12
Arlette Rwigemera, Fabien Joao, Geraldine Delbes
BACKGROUND: Epigenetic reprogramming is a critical step in male germ cell development that occurs during perinatal life. It is characterized by the remodeling of different epigenetic marks such as DNA methylation (5mC) and methylation of histone H3. It has been suggested that endocrine disruptors can affect the male germline epigenome by altering epigenetic reprogramming, but the mechanisms involved are still unknown. We have previously used an organ culture system that maintains the development of the different fetal testis cell types, to evaluate the effects of various endocrine disruptors on gametogenesis and steroidogenesis in the rat...
2017: Epigenetics & Chromatin
https://www.readbyqxmd.com/read/28408905/tet-methylcytosine-oxidases-in-t-cell-and-b-cell-development-and-function
#13
REVIEW
Ageliki Tsagaratou, Chan-Wang J Lio, Xiaojing Yue, Anjana Rao
DNA methylation is established by DNA methyltransferases and is a key epigenetic mark. Ten-eleven translocation (TET) proteins are enzymes that oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidization products (oxi-mCs), which indirectly promote DNA demethylation. Here, we provide an overview of the effect of TET proteins and altered DNA modification status in T and B cell development and function. We summarize current advances in our understanding of the role of TET proteins and 5hmC in T and B cells in both physiological and pathological contexts...
2017: Frontiers in Immunology
https://www.readbyqxmd.com/read/28402695/uhrf2-regulates-local-5-methylcytosine-and-suppresses-spontaneous-seizures
#14
Yidan Liu, Bin Zhang, Xiaoyu Meng, Matthew J Korn, Jack M Parent, Lin-Yu Lu, Xiaochun Yu
The 5-methylcytosine (5mC) modification regulates multiple cellular processes and is faithfully maintained following DNA replication. In addition to DNA methyltransferase (DNMT) family proteins, ubiquitin-like PHD and ring finger domain-containing protein 1 (UHRF1) plays an important role in the maintenance of 5 mC levels. Loss of UHRF1 abolishes 5 mC in cells and leads to embryonic lethality in mice. Interestingly, UHRF1 has a paralog, UHRF2, that has similar sequence and domain architecture, but its biological function is not clear...
April 12, 2017: Epigenetics: Official Journal of the DNA Methylation Society
https://www.readbyqxmd.com/read/28400750/methylation-on-rna-a-potential-mechanism-related-to-immune-priming-within-but-not-across-generations
#15
Cynthia Castro-Vargas, César Linares-López, Adolfo López-Torres, Katarzyna Wrobel, Juan C Torres-Guzmán, Gloria A G Hernández, Kazimierz Wrobel, Humberto Lanz-Mendoza, Jorge Contreras-Garduño
Invertebrate immune priming is a growing field in immunology. This phenomenon refers to the ability of invertebrates to generate a more vigorous immune response to a second encounter with a specific pathogen and can occur within and across generations. Although the precise mechanism has not been elucidated, it has been suggested that methylation of DNA is a cornerstone for this phenomenon. Here, using a novel method of analytical chemistry (a reversed-phase liquid chromatography procedure) and the beetle Tenebrio molitor as a model system, we did not find evidence to support this hypothesis taking into account the percentage of methylated cytosine entities in DNA (5mdC) within or across generations...
2017: Frontiers in Microbiology
https://www.readbyqxmd.com/read/28396520/cytosine-modifications-modulate-the-chromatin-architecture-of-transcriptional-enhancers
#16
Elise A Mahé, Thierry Madigou, Aurélien A Sérandour, Maud Bizot, Stéphane Avner, Frédéric Chalmel, Gaëlle Palierne, Raphaël Métivier, Gilles Salbert
Epigenetic mechanisms are believed to play key roles in the establishment of cell-specific transcription programs. Accordingly, the modified bases 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) have been observed in DNA of genomic regulatory regions such as enhancers, and oxidation of 5mC into 5hmC by Ten Eleven Translocation (TET) proteins correlates with enhancer activation. However, the functional relationship between cytosine modifications and the chromatin architecture of enhancers remains elusive...
April 10, 2017: Genome Research
https://www.readbyqxmd.com/read/28360182/simultaneous-mapping-of-active-dna-demethylation-and-sister-chromatid-exchange-in-single-cells
#17
Xiaoji Wu, Azusa Inoue, Tsukasa Suzuki, Yi Zhang
To understand mammalian active DNA demethylation, various methods have been developed to map the genomic distribution of the demethylation intermediates 5-formylcysotine (5fC) and 5-carboxylcytosine (5caC). However, the majority of these methods requires a large number of cells to begin with. In this study, we describe low-input methylase-assisted bisulfite sequencing (liMAB-seq ) and single-cell MAB-seq (scMAB-seq), capable of profiling 5fC and 5caC at genome scale using ∼100 cells and single cells, respectively...
March 1, 2017: Genes & Development
https://www.readbyqxmd.com/read/28351182/ten-eleven-translocation-1-functions-as-a-mediator-of-sod3-expression-in-human-lung-cancer-a549-cells
#18
Tetsuro Kamiya, Risa Nakahara, Namiki Mori, Hirokazu Hara, Tetsuo Adachi
Superoxide dismutase (SOD) 3, one of the SOD isozymes, plays a pivotal role in extracellular redox homeostasis. The expression of SOD3 is regulated by epigenetics in human lung cancer A549 cells and human monocytic THP-1 cells; however, the molecular mechanisms governing SOD3 expression have not been elucidated in detail. Ten-eleven translocation (TET), a dioxygenase of 5-methylcytosine (5mC), plays a central role in DNA demethylation processes and induces target gene expression. In the present study, TET1 expression was abundant in U937 cells, but its expression was weakly expressed in A549 and THP-1 cells...
March 2017: Free Radical Research
https://www.readbyqxmd.com/read/28348165/combinatorial-dna-methylation-codes-at-repetitive-elements
#19
Christophe Papin, Abdulkhaleg Ibrahim, Stephanie Le Gras, Amandine Velt, Bernard Jost, Isabelle Stoll, Hervé Menoni, Christian Bronner, Stefan Dimitrov, Ali Hamiche
DNA methylation is an essential epigenetic modification, present in both unique DNA sequences and repetitive elements, but its exact function in repetitive elements remains obscure. Here, we describe the genome-wide comparative analysis of the 5mC, 5hmC, 5fC and 5caC profiles of repetitive elements in mouse embryonic fibroblasts and mouse embryonic stem cells. We provide evidence for distinct and highly specific DNA methylation/oxidation patterns of the repetitive elements in both cell types, which mainly affect CA repeats and evolutionary conserved mouse-specific transposable elements including IAP-LTRs, SINEs B1m/B2m and L1Md-LINEs...
March 27, 2017: Genome Research
https://www.readbyqxmd.com/read/28343982/single-cell-5-formylcytosine-landscapes-of-mammalian-early-embryos-and-escs-at-single-base-resolution
#20
Chenxu Zhu, Yun Gao, Hongshan Guo, Bo Xia, Jinghui Song, Xinglong Wu, Hu Zeng, Kehkooi Kee, Fuchou Tang, Chengqi Yi
Active DNA demethylation in mammals involves ten-eleven translocation (TET) family protein-mediated oxidation of 5-methylcytosine (5mC). However, base-resolution landscapes of 5-formylcytosine (5fC) (an oxidized derivative of 5mC) at the single-cell level remain unexplored. Here, we present "CLEVER-seq" (chemical-labeling-enabled C-to-T conversion sequencing), which is a single-cell, single-base resolution 5fC-sequencing technology, based on biocompatible, selective chemical labeling of 5fC and subsequent C-to-T conversion during amplification and sequencing...
May 4, 2017: Cell Stem Cell
keyword
keyword
66012
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"