keyword
MENU ▼
Read by QxMD icon Read
search

5mC

keyword
https://www.readbyqxmd.com/read/28810288/overexpression-of-demeter-a-dna-demethylase-promotes-early-apical-bud-maturation-in-poplar
#1
Daniel Conde, Alicia Moreno-Cortés, Christopher Dervinis, José M Ramos-Sánchez, Matias Kirst, Mariano Perales, Pablo González-Melendi, Isabel Allona
The transition from active growth to dormancy is critical for the survival of perennial plants. We identified a DEMETER-like (CsDML) cDNA from a winter-enriched cDNA subtractive library in chestnut (Castanea sativa Mill.), an economically and ecologically important species. Next, we characterized this DNA demethylase and its putative orthologue in the more experimentally tractable hybrid poplar (Populus tremula x alba), under the signals that trigger bud dormancy in trees. We performed phylogenetic and protein sequence analysis, gene expression profiling and 5mC immunodetection studies to evaluate the role of CsDML and its homologue in poplar, PtaDML6...
August 15, 2017: Plant, Cell & Environment
https://www.readbyqxmd.com/read/28769976/new-insights-into-5hmc-dna-modification-generation-distribution-and-function
#2
REVIEW
Dong-Qiao Shi, Iftikhar Ali, Jun Tang, Wei-Cai Yang
Dynamic DNA modifications, such as methylation/demethylation on cytosine, are major epigenetic mechanisms to modulate gene expression in both eukaryotes and prokaryotes. In addition to the common methylation on the 5th position of the pyrimidine ring of cytosine (5mC), other types of modifications at the same position, such as 5-hydroxymethyl (5hmC), 5-formyl (5fC), and 5-carboxyl (5caC), are also important. Recently, 5hmC, a product of 5mC demethylation by the Ten-Eleven Translocation family proteins, was shown to regulate many cellular and developmental processes, including the pluripotency of embryonic stem cells, neuron development, and tumorigenesis in mammals...
2017: Frontiers in Genetics
https://www.readbyqxmd.com/read/28757075/dna-demethylation-pattern-of-in-vitro-fertilized-and-cloned-porcine-pronuclear-stage-embryos
#3
Xiaowei Nie, Qiang Liu, Ronggen Wang, Wenjie Sheng, Xiaokang Li, Manling Zhang, Yong Jin, Lihua Zhao, Daorong Hou, Ning Yang, Zhaoqiang Wu, Yifan Dai, Rongfeng Li
Recent studies in mice showed that the Ten-eleven translocation Enzymes (TET) family is involved in the active DNA demethylation. The isotype TET-3 is responsible for the conversion of 5mc (5-methylcytosine) to 5hmc (5-hydroxymethylcytosine) at the pronuclear stages of mouse embryo. This study was performed to investigate the pattern of methylation change and the role of TET family in the demethylation process of porcine in-vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) derived embryo. Bisulfite-sequencing PCR (BSP) and DNA glucosylation and digestion before quantitative PCR (qGluMS-PCR) were done to evaluate the exact change of methylation during porcine pronuclear stages...
July 27, 2017: Clinica Chimica Acta; International Journal of Clinical Chemistry
https://www.readbyqxmd.com/read/28735853/a-comparative-study-of-genome-organization-and-epigenetic-mechanisms-in-model-ciliates-with-an-emphasis-on-tetrahymena-paramecium-and-oxytricha
#4
REVIEW
Yurui Wang, Yuanyuan Wang, Yalan Sheng, Jie Huang, Xiao Chen, Khaled A S Al-Rasheid, Shan Gao
As a group of unicellular eukaryotes, ciliates offer a unique system to explore epigenetic regulation, mostly due to their nuclear dualism. Ciliates launched a successful radiation after their early evolutionary branching, therefore harboring an unexpectedly rich pool of diverse biological functions and mechanisms. In this review, we compare distinct features of different ciliates in mating type determination, genome organization, DNA methylation, and removal of internal eliminated sequences (IES), with emphasis on Tetrahymena, Paramecium and Oxytricha...
July 1, 2017: European Journal of Protistology
https://www.readbyqxmd.com/read/28710961/epigenetic-modification-differences-between-fetal-fibroblast-cells-and-mesenchymal-stem-cells-of-the-arbas-cashmere-goat
#5
Xiao Wang, Zhimin Wang, Qing Wang, Hefei Wang, Hao Liang, Dongjun Liu
To explore the epigenetic mechanisms regulating mesenchymal stem cells, we analyzed epigenetic patterns in control goat fetal fibroblast cells (gFFCs), adipose-derived stem cells (gADSCs), bone marrow stromal cells (gBMSCs), and muscle-derived satellite cells (gMDSCs). We found that the 5mC content of gBMSC genomes was lower than that of gFFC genomes, while the 5mC content of gADSC and gMDSC genomes surpassed that of gFFC genomes. H3K9 acetylation did not differ significantly among those cells; gFFCs, gADSCs, and gMDSCs contained acetylated H3K9, H3K14, H3K18, H4K5, and H4K12, but gBMSCs contained almost no acetylated H4K5 and H4K12...
July 9, 2017: Research in Veterinary Science
https://www.readbyqxmd.com/read/28678681/profiling-of-oxbs-450k-5-hydroxymethylcytosine-in-human-placenta-and-brain-reveals-enrichment-at-imprinted-loci
#6
Jose Ramon Hernandez Mora, Marta Sanchez-Delgado, Paolo Petazzi, Sebastian Moran, Manel Esteller, Isabel Iglesias-Platas, David Monk
DNA methylation (5-methylcytosine, 5mC) is involved in many cellular processes and is an epigenetic mechanism primarily associated with transcriptional repression. The recent discovery that 5mC can be oxidized to 5-hydromethylcytosine (5hmC) by TET proteins has revealed the "sixth base" of DNA and provides additional complexity to what was originally thought to be a stable repressive mark. However, our knowledge of the genome-wide distribution of 5hmC in different tissues is currently limited. Here, we sought to define loci enriched for 5hmC in the placenta genome by combining oxidative bisulphite (oxBS) treatment with high-density Illumina Infinium HumanMethylation450 methylation arrays and to compare our results with those obtained in brain...
July 5, 2017: Epigenetics: Official Journal of the DNA Methylation Society
https://www.readbyqxmd.com/read/28668047/substituents-effect-in-electron-attachment-to-epigenetic-modifications-of-cytosine
#7
Fernanda B Nunes, Márcio H F Bettega, Sergio d'Almeida Sanchez
Epigenetic modifications of cytosine have been found to influence differently in many processes in biological systems. In order to investigate the differences in electron attachment to different epigenetic modifications of cytosine, we reported the A″ component of the integral cross section of electron scattering by cytosine (C) and its epigenetic modifications 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Our results were obtained with the Schwinger multichannel method with pseudopotentials in the static-exchange (SE) and static-exchange plus polarization (SEP) approximations...
June 28, 2017: Journal of Chemical Physics
https://www.readbyqxmd.com/read/28660881/ten-eleven-translocation-2-interacts-with-forkhead-box-o3-and-regulates-adult-neurogenesis
#8
Xuekun Li, Bing Yao, Li Chen, Yunhee Kang, Yujing Li, Ying Cheng, Liping Li, Li Lin, Zhiqin Wang, Mengli Wang, Feng Pan, Qing Dai, Wei Zhang, Hao Wu, Qiang Shu, Zhaohui Qin, Chuan He, Mingjiang Xu, Peng Jin
Emerging evidence suggests that active DNA demethylation machinery plays important epigenetic roles in mammalian adult neurogenesis; however, the precise molecular mechanisms and critical functional players of DNA demethylation in this process remain largely unexplored. Ten-eleven translocation (Tet) proteins convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and its downstream derivatives. Here we show that 5hmC is elevated during the differentiation of adult neural stem cells (aNSCs), and Tet2 is primarily responsible for modulating 5hmC dynamics...
June 29, 2017: Nature Communications
https://www.readbyqxmd.com/read/28648900/tet-catalyzed-5-hydroxymethylation-precedes-hnf4a-promoter-choice-during-differentiation-of-bipotent-liver-progenitors
#9
Pierre-Benoit Ancey, Szilvia Ecsedi, Marie-Pierre Lambert, Fazlur Rahman Talukdar, Marie-Pierre Cros, Denise Glaise, Diana Maria Narvaez, Veronique Chauvet, Zdenko Herceg, Anne Corlu, Hector Hernandez-Vargas
Understanding the processes that govern liver progenitor cell differentiation has important implications for the design of strategies targeting chronic liver diseases, whereby regeneration of liver tissue is critical. Although DNA methylation (5mC) and hydroxymethylation (5hmC) are highly dynamic during early embryonic development, less is known about their roles at later stages of differentiation. Using an in vitro model of hepatocyte differentiation, we show here that 5hmC precedes the expression of promoter 1 (P1)-dependent isoforms of HNF4A, a master transcription factor of hepatocyte identity...
July 11, 2017: Stem Cell Reports
https://www.readbyqxmd.com/read/28647531/a-rapid-mass-spectrometric-method-for-the-measurement-of-catalytic-activity-of-ten-eleven-translocation-enzymes
#10
Babu Sudhamalla, Debasis Dey, Megan Breski, Kabirul Islam
Enzymatic methylation at carbon five on cytosine (5mC) in DNA is a hallmark of mammalian epigenetic programming and is critical to gene regulation during early embryonic development. It has recently been shown that dynamic erasure of 5mC by three members of the ten-eleven translocation (TET) family plays a key role in cellular differentiation. TET enzymes belong to Fe (II)- and 2-ketoglutarate (2KG) dependent dioxygenases that successively oxidize 5mC to 5-hydroxymethyl cytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5CaC), thus providing a chemical basis for the removal of 5mC which once was thought to be a permanent mark in mammalian genome...
October 1, 2017: Analytical Biochemistry
https://www.readbyqxmd.com/read/28629775/8-oxo-7-8-dihydroguanine-friend-and-foe-epigenetic-like-regulator-versus-initiator-of-mutagenesis
#11
REVIEW
Aaron M Fleming, Cynthia J Burrows
A high flux of reactive oxygen species during oxidative stress results in oxidative modification of cellular components including DNA. Oxidative DNA "damage" to the heterocyclic bases is considered deleterious because polymerases may incorrectly read the modifications causing mutations. A prominent member in this class is the oxidized guanine base 8-oxo-7,8-dihydroguanine (OG) that is moderately mutagenic effecting G→T transversion mutations. Recent reports have identified that formation of OG in G-rich regulatory elements in the promoters of the VEGF, TNFα, and SIRT1 genes can increase transcription via activation of the base excision repair (BER) pathway...
August 2017: DNA Repair
https://www.readbyqxmd.com/read/28607180/p53-is-essential-for-dna-methylation-homeostasis-in-na%C3%A3-ve-embryonic-stem-cells-and-its-loss-promotes-clonal-heterogeneity
#12
Ayala Tovy, Adam Spiro, Ryan McCarthy, Zohar Shipony, Yael Aylon, Kendra Allton, Elena Ainbinder, Noa Furth, Amos Tanay, Michelle Barton, Moshe Oren
DNA methylation is a key regulator of embryonic stem cell (ESC) biology, dynamically changing between naïve, primed, and differentiated states. The p53 tumor suppressor is a pivotal guardian of genomic stability, but its contributions to epigenetic regulation and stem cell biology are less explored. We report that, in naïve mouse ESCs (mESCs), p53 restricts the expression of the de novo DNA methyltransferases Dnmt3a and Dnmt3b while up-regulating Tet1 and Tet2, which promote DNA demethylation. The DNA methylation imbalance in p53-deficient (p53(-/-)) mESCs is the result of augmented overall DNA methylation as well as increased methylation landscape heterogeneity...
May 15, 2017: Genes & Development
https://www.readbyqxmd.com/read/28592103/-association-of-etheno-dna-adduct-and-dna-methylation-level-among-workers-exposed-to-diesel-engine-exhaust
#13
M L Shen, Z N He, X Zhang, H W Duan, Y Niu, P Bin, M Ye, T Meng, Y F Dai, S F Yu, W Chen, Y X Zheng
Objective: To investigate the association between etheno-DNA adduct and the promoter of DNA methylation levels of cyclin dependent kinase inhibitor 2A (P16), Ras association domain family 1 (RASSF1A) and O-6-methylguanine-DNA methyltransferase (MGMT) in workers with occupational exposure to diesel engine exhaust (DEE). Methods: We recruited 124 diesel engine testing workers as DEE exposure group and 112 water pump operator in the same area as control group in Henan province in 2012 using cluster sampling. The demographic data were obtained by questionnaire survey; urine after work and venous blood samples were collected from each subject...
June 6, 2017: Zhonghua Yu Fang Yi Xue za Zhi [Chinese Journal of Preventive Medicine]
https://www.readbyqxmd.com/read/28586322/dna-n-6-methyladenine-in-metazoans-functional-epigenetic-mark-or-bystander
#14
Guan-Zheng Luo, Chuan He
The DNA-adenine modification N(6)-methyladenine (6mA), initially thought to be mainly restricted to prokaryotes and certain unicellular eukaryotes, has recently been found in metazoans. Proposed functions vary from gene activation to transposon suppression. However, since most metazoan genomes possess 5-methylcytosine (5mC) as a dominant epigenetic mark, it raises the question of why 6mA is required. This Perspective summarizes the latest discoveries and suggests potential functional roles for 6mA in metazoan genomes...
June 6, 2017: Nature Structural & Molecular Biology
https://www.readbyqxmd.com/read/28584398/tumor-necrosis-factor-%C3%AE-decreases-ec-sod-expression-through-dna-methylation
#15
Shunpei Morisawa, Hiroyuki Yasuda, Tetsuro Kamiya, Hirokazu Hara, Tetsuo Adachi
Extracellular-superoxide dismutase (EC-SOD) is a secreted antioxidative enzyme, and its presence in vascular walls may play an important role in protecting the vascular system against oxidative stress. EC-SOD expression in cultured cell lines is regulated by various cytokines including tumor necrosis factor-α (TNF-α). TNF-α is a major mediator of pathophysiological conditions and may induce or suppress the generation of various types of mediators. Epigenetics have been defined as mitotically heritable changes in gene expression that do not affect the DNA sequence, and include DNA methylation and histone modifications...
May 2017: Journal of Clinical Biochemistry and Nutrition
https://www.readbyqxmd.com/read/28555658/tet-mediated-active-dna-demethylation-mechanism-function-and-beyond
#16
REVIEW
Xiaoji Wu, Yi Zhang
In mammals, DNA methylation in the form of 5-methylcytosine (5mC) can be actively reversed to unmodified cytosine (C) through TET dioxygenase-mediated oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), followed by replication-dependent dilution or thymine DNA glycosylase (TDG)-dependent base excision repair. In the past few years, biochemical and structural studies have revealed mechanistic insights into how TET and TDG mediate active DNA demethylation...
September 2017: Nature Reviews. Genetics
https://www.readbyqxmd.com/read/28531315/the-interaction-between-cytosine-methylation-and-processes-of-dna-replication-and-repair-shape-the-mutational-landscape-of-cancer-genomes
#17
Rebecca C Poulos, Jake Olivier, Jason W H Wong
Methylated cytosines (5mCs) are frequently mutated in the genome. However, no studies have yet comprehensively analysed mutation-methylation associations across cancer types. Here we analyse 916 cancer genomes, together with tissue type-specific methylation and replication timing data. We describe a strong mutation-methylation association across colorectal cancer subtypes, most interestingly in samples with microsatellite instability (MSI) or Polymerase epsilon (POLE) exonuclease domain mutations. By analysing genomic regions with differential mismatch repair (MMR) efficiency, we suggest a possible role for MMR in the correction of 5mC deamination events, potentially accounting for the high rate of 5mC mutation accumulation in MSI tumours...
May 22, 2017: Nucleic Acids Research
https://www.readbyqxmd.com/read/28529766/genome-wide-profiling-of-dna-5-hydroxymethylcytosine-during-rat-sertoli-cell-maturation
#18
Miriam Landfors, Jostein Johansen, Jan Magnus Aronsen, Cathrine Broberg Vågbø, Louis C Doré, Chuan He, Ivar Sjaastad, Pål Sætrom, Péter Fedorcsák, John Arne Dahl, Håvard Aanes, Markus Fußer, Arne Klungland
Sertoli cells have dual roles during the cells' lifetime. In the juvenile mammal, Sertoli cells proliferate and create the structure of the testis, and during puberty they cease to proliferate and take on the adult role of supporting germ cells through spermatogenesis. Accordingly, many genes expressed in Sertoli cells during testis formation are repressed during spermatogenesis. 5-Hydroxymethylcytosine (5hmC) is a DNA modification enzymatically generated from 5mC and present in all investigated mammalian tissues at varying levels...
2017: Cell Discovery
https://www.readbyqxmd.com/read/28520399/immunofluorescence-imaging-strategy-for-evaluation-of-the-accessibility-of-dna-5-hydroxymethylcytosine-in-chromatins
#19
Shangwei Zhong, Zhe Li, Ting Jiang, Xiangjun Li, Hailin Wang
DNA 5-hydroxymethylcytosine (5hmC) is an important epigenetic modification found in various mammalian cells. Immunofluorescence imaging analysis essentially provides visual pictures for the abundance and distribution of DNA 5hmC in single cells. However, nuclear DNA is usually wrapped around nucleosomes, packaged into chromatins, and further bound with many functional proteins. These physiologically relevant events would generate barriers to the anti-5hmC antibody to selectively recognize 5hmC in DNA. By taking advantage of these naturally generated barriers, here, we present a strategy to evaluate the accessibility of DNA 5hmC in chromatins in situ...
June 6, 2017: Analytical Chemistry
https://www.readbyqxmd.com/read/28516982/colorimetric-and-electrochemical-quantification-of-global-dna-methylation-using-a-methyl-cytosine-specific-antibody
#20
Md Hakimul Haque, Ripon Bhattacharjee, Md Nazmul Islam, Vinod Gopalan, Nam-Trung Nguyen, Alfred K Lam, Muhammad J A Shiddiky
We report a simple colorimetric (naked-eye) and electrochemical method for the rapid, sensitive and specific quantification of global methylation levels using only 25 ng of input DNA. Our approach utilises a three-step strategy; (i) initial adsorption of the extracted, purified and denatured bisulfite-treated DNA on a screen-printed gold electrode (SPE-Au), (ii) immuno-recognition of methylated DNA using a horseradish peroxidase (HRP)-conjugated methylcytosine (HRP-5mC) antibody and (iii) subsequent colorimetric detection by the enzymatic oxidation of 3,3',5,5'-tetramethylbenzidin (TMB)/H2O2 which generated a blue-coloured product in the presence of methylated DNA and HRP-5mC immunocomplex...
May 18, 2017: Analyst
keyword
keyword
66012
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"