Read by QxMD icon Read


Marcus D Wilson, Samir Benlekbir, Amélie Fradet-Turcotte, Alana Sherker, Jean-Philippe Julien, Andrea McEwan, Sylvie M Noordermeer, Frank Sicheri, John L Rubinstein, Daniel Durocher
DNA double-strand breaks (DSBs) elicit a histone modification cascade that controls DNA repair. This pathway involves the sequential ubiquitination of histones H1 and H2A by the E3 ubiquitin ligases RNF8 and RNF168, respectively. RNF168 ubiquitinates H2A on lysine 13 and lysine 15 (refs 7, 8) (yielding H2AK13ub and H2AK15ub, respectively), an event that triggers the recruitment of 53BP1 (also known as TP53BP1) to chromatin flanking DSBs. 53BP1 binds specifically to H2AK15ub-containing nucleosomes through a peptide segment termed the ubiquitination-dependent recruitment motif (UDR), which requires the simultaneous engagement of histone H4 lysine 20 dimethylation (H4K20me2) by its tandem Tudor domain...
August 4, 2016: Nature
Karine Jacquet, Amélie Fradet-Turcotte, Nikita Avvakumov, Jean-Philippe Lambert, Céline Roques, Raj K Pandita, Eric Paquet, Pauline Herst, Anne-Claude Gingras, Tej K Pandita, Gaëlle Legube, Yannick Doyon, Daniel Durocher, Jacques Côté
The NuA4/TIP60 acetyltransferase complex is a key regulator of genome expression and stability. Here we identified MBTD1 as a stable subunit of the complex, and we reveal that, via a histone reader domain for H4K20me1/2, MBTD1 allows TIP60 to associate with specific gene promoters and to promote the repair of DNA double-strand breaks by homologous recombination. It was previously suggested that TIP60-dependent acetylation of H4 regulates binding of the non-homologous end joining factor 53BP1, which engages chromatin through simultaneous binding of H4K20me2 and H2AK15ub...
May 5, 2016: Molecular Cell
Zhiquan Wang, Honglian Zhang, Ji Liu, Abigael Cheruiyot, Jeong-Heon Lee, Tamas Ordog, Zhenkun Lou, Zhongsheng You, Zhiguo Zhang
Dynamic regulation of RNF168-mediated ubiquitylation of histone H2A Lys13,15 (H2AK13,15ub) at DNA double-strand breaks (DSBs) is crucial for preventing aberrant DNA repair and maintaining genome stability. However, it remains unclear which deubiquitylating enzyme (DUB) removes H2AK13,15ub. Here we show that USP51, a previously uncharacterized DUB, deubiquitylates H2AK13,15ub and regulates DNA damage response. USP51 depletion results in increased spontaneous DNA damage foci and elevated levels of H2AK15ub and impairs DNA damage response...
April 15, 2016: Genes & Development
Amélie Fradet-Turcotte, Marella D Canny, Cristina Escribano-Díaz, Alexandre Orthwein, Charles C Y Leung, Hao Huang, Marie-Claude Landry, Julianne Kitevski-LeBlanc, Sylvie M Noordermeer, Frank Sicheri, Daniel Durocher
53BP1 (also called TP53BP1) is a chromatin-associated factor that promotes immunoglobulin class switching and DNA double-strand-break (DSB) repair by non-homologous end joining. To accomplish its function in DNA repair, 53BP1 accumulates at DSB sites downstream of the RNF168 ubiquitin ligase. How ubiquitin recruits 53BP1 to break sites remains unknown as its relocalization involves recognition of histone H4 Lys 20 (H4K20) methylation by its Tudor domain. Here we elucidate how vertebrate 53BP1 is recruited to the chromatin that flanks DSB sites...
July 4, 2013: Nature
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"