Read by QxMD icon Read

Actin cytoskeleton

P Gómez-Contreras, J M Ramiro-Díaz, A Sierra, C Stipp, F E Domann, R J Weigel, G Lal
ECM1 overexpression is an independent predictor of poor prognosis in primary breast carcinomas, however the mechanisms by which ECM1 affects tumor progression have not been completely elucidated. ECM1 was silenced in the triple-negative breast cancer cell lines Hs578T and MDAMB231 using siRNA and the cells were evaluated for changes in morphology, migration, invasion and adhesion. Actin cytoskeleton alterations were evaluated by fluorescent staining and levels of activated Rho GTPases by pull down assays. ECM1 downregulation led to significantly diminished cell migration (p = 0...
October 21, 2016: Clinical & Experimental Metastasis
Tadamoto Isogai, Rob van der Kammen, Onno B Bleijerveld, Soenita S Goerdayal, Elisabetta Argenzio, A F Maarten Altelaar, Metello Innocenti
Formin mDia2 is a cytoskeleton-regulatory protein that switches reversibly between a closed, auto-inhibited and an open, active conformation. Although the open conformation of mDia2 induces actin assembly thereby controlling many cellular processes, mDia2 possesses also actin-independent and conformation-insensitive scaffolding roles related to microtubules and p53, respectively. Thus, we hypothesise that mDia2 may have other unappreciated functions and regulatory modes. Here we identify and validate proteasome and Ubiquitin as mDia2-interacting partners using SILAC-based quantitative proteomics and biochemistry, respectively...
October 21, 2016: Journal of Proteome Research
Christian Schulz, Radovan Vukićević, Anne Krüger-Genge, Axel T Neffe, Andreas Lendlein, Friedrich Jung
The formation of a functionally-confluent and shear-resistant endothelial cell monolayer on cardiovascular implants is a promising strategy to prevent thrombogenic processes after implantation. On the basis of existing studies with arterial endothelial cells adhering after two hours on gelatin-based hydrogels in marked higher numbers compared to tissue culture plates, we hypothesize that also venous endothelial cells (HUVEC) should be able to adhere and form an endothelial monolayer on these hydrogels after days...
October 15, 2016: Clinical Hemorheology and Microcirculation
Rong-Hua Yang, Shao-Hai Qi, Shu-Bin Ruan, Ze-Peng Lin, Yan Lin, Feng-Gang Zhang, Xiao-Dong Chen, Ju-Lin Xie
Epidermal growth factor (EGF)-like family members mediate a wide range of biological activities including cell proliferation and migration. Increasing evidence indicated that EGF plays an important role in the process of wound healing by stimulating fibroblast motility. The aim of this study was to see whether EGF-like domain 7 (EGFL7)-overexpressing epidermal stem cells (EGFL7-ESCs) would promote fibroblast proliferation and migration. We found that mRNA and protein levels of EGFL7 expression were significantly increased in EGFL7-ESCs...
October 20, 2016: Molecular and Cellular Biochemistry
Katsuya Sato, Masashi Kimura, Kazue Sugiyama, Masashi Nishikawa, Yukio Okano, Hitoshi Nagaoka, Takahiro Nagase, Yukio Kitade, Hiroshi Ueda
PLEKHG2/FLJ00018 is a Gβγ-dependent guanine nucleotide exchange factor for the small GTPases Rac and Cdc42 and has been shown to mediate the signaling pathways leading to actin cytoskeleton reorganization. Here we showed that the zinc finger domain-containing protein four-and-a-half LIM domains 1 (FHL1) acts as a novel interaction partner of PLEKHG2 by the yeast two-hybrid system. Among the isoforms of FHL1 (i.e., FHL1A, FHL1B and FHL1C), FHL1A and FHL1B interacted with PLEKHG2. We found that there was an FHL1-binding region at amino acids 58-150 of PLEKHG2...
October 20, 2016: Journal of Biological Chemistry
Suxu Tan, Jun Yao, Tao Zhou, Shikai Liu, Zihao Yuan, Changxu Tian, Qi Li, Zhanjiang Liu
The Rho family GTPases are a group of small monomeric G proteins, which are molecular switches in signaling pathways. They have been known to regulate a diverse range of cellular processes including actin cytoskeleton rearrangement and microtubule dynamics. In particular, their participations in immune responses are also significant. However, little information of the Rho GTPases is available in teleost including channel catfish, an economically important species and one of the best teleost models for immune research...
October 17, 2016: Developmental and Comparative Immunology
Natalya Bildyug
Matrix metalloproteinases (MMPs) are implicated in many physiological and pathological processes, including contraction, migration, differentiation, and proliferation. These processes all involve cell phenotype changes, known to be accompanied by reorganization of actin cytoskeleton. Growing evidence indicates a correlation between MMP activity and the dynamics of actin system, suggesting their mutual regulation. Here, data on the influence of MMPs on the actin microfilament system, on the one hand, and the dependence of MMP expression and activation on the organization of actin structures, on the other hand, are reviewed...
October 20, 2016: Biomolecular Concepts
Xin Tian, Zaixing Yang, Guangxin Duan, Anqing Wu, Zonglin Gu, Leili Zhang, Chunying Chen, Zhifang Chai, Cuicui Ge, Ruhong Zhou
Graphene and graphene-based nanomaterials are broadly used for various biomedical applications due to their unique physiochemical properties. However, how graphene-based nanomaterials interact with biological systems has not been thoroughly studied. This study shows that graphene oxide (GO) nanosheets retard A549 lung carcinoma cell migration through nanosheet-mediated disruption of intracellular actin filaments. After GO nanosheets treatment, A549 cells display slower migration and the structure of the intracellular actin filaments is dramatically changed...
October 20, 2016: Small
Julienne K Muenzner, Bernhard Biersack, Alexander Albrecht, Tobias Rehm, Ulrike Lacher, Wolfgang Milius, Angela Casini, Jing-Jing Zhang, Ingo Ott, Viktor Brabec, Olga Stuchlikova, Ion C Andronache, Detlef Schuppan, Leonard Kaps, Rainer Schobert
Four gold(I) carbene complexes featuring 4-ferrocenyl substituted imidazol-2-ylidene ligands were investigated for antiproliferative and antivascular properties. They were active against a panel of seven cancer cell lines, including multidrug-resistant ones, with low micromolar or nanomolar IC50 (72 h) values, according to their lipophilicity and cellular uptake. The delocalised lipophilic cationic complexes 8 and 10 acted by increasing the reactive oxygen species in two ways: via a genuine ferrocene effect and by inhibiting the thioredoxin reductase...
October 20, 2016: Chemistry: a European Journal
Ru-Xia Jia, Xing Duan, Si-Jing Song, Shao-Chen Sun
LIMKi 3 is a specific selective LIMK inhibitor against LIMK1 and LIMK2, while LIMK1 and LIMK2 are the main regulators of actin cytoskeleton to participate in many cell activities. However, the effect of LIMKi 3 in porcine oocyte meiosis is still unclear. The present study was designed to investigate the effects of LIMKi 3 and potential regulatory role of LIMK1/2 on porcine oocyte meiotic maturation. Immunofluorescent staining of p-LIMK1/2 antibody showed that LIMK1/2 was localized mainly to the cortex of porcine oocyte, which co-localized with actin...
2016: PeerJ
Yingmei Wang, Limei Hu, Ping Ji, Fei Teng, Wenyan Tian, Yuexin Liu, David Cogdell, Jinsong Liu, Anil K Sood, Russell Broaddus, Fengxia Xue, Wei Zhang
BACKGROUND: Endometrial carcinoma (EC) is one of the most common malignancies of the female reproductive system. Migration and invasion inhibitory protein (MIIP) gene was recently discovered candidate tumor suppress gene which located at chromosome 1p36.22. 1p36 deletion was found in many types of tumor including EC. In the present study, we will determine the role and mechanism of MIIP in EC metastasis. METHODS: Immunohistochemistry was used to measure MIIP expression in normal and EC tissue...
October 19, 2016: Journal of Hematology & Oncology
Delilah F G Hendriks, Lisa Fredriksson Puigvert, Simon Messner, Wolfgang Mortiz, Magnus Ingelman-Sundberg
Drug-induced cholestasis (DIC) is poorly understood and its preclinical prediction is mainly limited to assessing the compound's potential to inhibit the bile salt export pump (BSEP). Here, we evaluated two 3D spheroid models, one from primary human hepatocytes (PHH) and one from HepaRG cells, for the detection of compounds with cholestatic liability. By repeatedly co-exposing both models to a set of compounds with different mechanisms of hepatotoxicity and a non-toxic concentrated bile acid (BA) mixture for 8 days we observed a selective synergistic toxicity of compounds known to cause cholestatic or mixed cholestatic/hepatocellular toxicity and the BA mixture compared to exposure to the compounds alone, a phenomenon that was more pronounced after extending the exposure time to 14 days...
October 19, 2016: Scientific Reports
Anika Steffen, Theresia E B Stradal, Klemens Rottner
The actin cytoskeleton is essential for morphogenesis and virtually all types of cell shape changes. Reorganization is per definition driven by continuous disassembly and re-assembly of actin filaments, controlled by major, ubiquitously operating machines. These are specifically employed by the cell to tune its activities in accordance with respective environmental conditions or to satisfy specific needs.Here we sketch some fundamental signalling pathways established to contribute to the reorganization of specific actin structures at the plasma membrane...
October 19, 2016: Handbook of Experimental Pharmacology
Lena Brüser, Sven Bogdan
The actin cytoskeleton provides mechanical support for cells and generates forces to drive cell shape changes and cell migration in morphogenesis. Molecular understanding of actin dynamics requires a genetically traceable model system that allows interdisciplinary experimental approaches to elucidate the regulatory network of cytoskeletal proteins in vivo. Here, we will discuss some examples of how advances in Drosophila genetics and high-resolution imaging techniques contribute to the discovery of new actin functions, signaling pathways, and mechanisms of actin regulation in vivo...
October 19, 2016: Handbook of Experimental Pharmacology
Christophe Ampe, Marleen Van Troys
Actin is the central building block of the actin cytoskeleton, a highly regulated filamentous network enabling dynamic processes of cells and simultaneously providing structure. Mammals have six actin isoforms that are very conserved and thus share common functions. Tissue-specific expression in part underlies their differential roles, but actin isoforms also coexist in various cell types and tissues, suggesting specific functions and preferential interaction partners. Gene deletion models, antibody-based staining patterns, gene silencing effects, and the occurrence of isoform-specific mutations in certain diseases have provided clues for specificity on the subcellular level and its consequences on the organism level...
October 19, 2016: Handbook of Experimental Pharmacology
N Bishara Marzook, Timothy P Newsome
The actin cytoskeleton is a crucial part of the eukaryotic cell. Viruses depend on host cells for their replication, and, as a result, many have developed ways of manipulating the actin network to promote their spread. This chapter reviews the various ways in which viruses utilize the actin cytoskeleton at discrete steps in their life cycle, from entry into the host cell, replication, and assembly of new progeny to virus release. Various actin inhibitors that function in different ways to affect proper actin dynamics can be used to parse the role of actin at these steps...
October 19, 2016: Handbook of Experimental Pharmacology
Alexander E Lang, Sonja Kühn, Hans Georg Mannherz
Actin is one of the most abundant cellular proteins and an essential constituent of the actin cytoskeleton, which by its dynamic behavior participates in many cellular activities. The organization of the actin cytoskeleton is regulated by a large number of proteins and represents one of the major targets of bacterial toxins. A number of bacterial effector proteins directly modify actin: Clostridial bacteria produce toxins, which ADP-ribosylate actin at Arg177 leading to inhibition of actin polymerization. The bacterium Photorhabdus luminescens produces several types of protein toxins, including the high molecular weight Tc toxin complex, whose component TccC3 ADP-ribosylates actin at Thr148 promoting polymerization and aggregation of intracellular F-actin leading to inhibition of several cellular functions, such as phagocytosis...
October 19, 2016: Current Topics in Microbiology and Immunology
Cristina Zennaro, Maria Pia Rastaldi, Gerald James Bakeine, Riccarda Delfino, Federica Tonon, Rossella Farra, Gabriele Grassi, Mary Artero, Massimo Tormen, Michele Carraro
Although it is well recognized that cell-matrix interactions are based on both molecular and geometrical characteristics, the relationship between specific cell types and the three-dimensional morphology of the surface to which they are attached is poorly understood. This is particularly true for glomerular podocytes - the gatekeepers of glomerular filtration - which completely enwrap the glomerular basement membrane with their primary and secondary ramifications. Nanotechnologies produce biocompatible materials which offer the possibility to build substrates which differ only by topology in order to mimic the spatial organization of diverse basement membranes...
2016: International Journal of Nanomedicine
Barbara Kathage, Sebastian Gehlert, Anna Ulbricht, Laura Lüdecke, Victor E Tapia, Zacharias Orfanos, Daniela Wenzel, Wilhelm Bloch, Rudolf Volkmer, Bernd K Fleischmann, Dieter O Fürst, Jörg Höhfeld
The cochaperone BAG3 is a central protein homeostasis factor in mechanically strained mammalian cells. It mediates the degradation of unfolded and damaged forms of the actin-crosslinker filamin through chaperone-assisted selective autophagy (CASA). In addition, BAG3 stimulates filamin transcription in order to compensate autophagic disposal and to maintain the actin cytoskeleton under strain. Here we demonstrate that BAG3 coordinates protein synthesis and autophagy through spatial regulation of the mammalian target of rapamycin complex 1 (mTORC1)...
October 15, 2016: Biochimica et Biophysica Acta
Alberto García-Mariscal, Karine Peyrollier, Astrid Basse, Esben Pedersen, Ralph Rühl, Jolanda van Hengel, Cord Brakebusch
The ubiquitously expressed small GTPase RhoA is essential for embryonic development and mutated in different cancers. Functionally, it is well described as a regulator of the actin cytoskeleton, but its role in gene regulation is less understood. Using primary mouse keratinocytes with a deletion of the RhoA gene, we have now been exploring how the loss of RhoA affects gene expression. Performing transcription factor reporter assays, we found a significantly decreased activity of a RAR luciferase reporter in RhoA-null keratinocytes...
October 18, 2016: Small GTPases
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"